• 제목/요약/키워드: Vehicle Active Suspension

검색결과 151건 처리시간 0.023초

궤도차량용 반능동 현수장치 성능특성에 관한 연구 (A Study on Performance Characteristics of Semi-Active Suspension System of Tracked Vehicle)

  • 김병운;이윤복;강이석
    • 한국군사과학기술학회지
    • /
    • 제6권1호
    • /
    • pp.9-20
    • /
    • 2003
  • In this study, the performance of a semi-active suspension system for heavy duty tracked vehicles has been investigated. To this end, continuous and on-off Sky-Hook control law have been evaluated for a 1/4 car model. Simulation results show that the semi-active suspension system has potential to improve ride quality of the vehicle. And we proposed a method for improving of variable damper performance.

HILS를 활용한 전투차량의 반능동 현수장치 적용에 관한 연구 (A Study on the Appication of Semi-Active Supension Units for a Combat Vehicle by Using HILS)

  • 김지웅;김문준;이은준;이경훈;우관제
    • 한국군사과학기술학회지
    • /
    • 제13권6호
    • /
    • pp.967-975
    • /
    • 2010
  • There have been a lot of efforts on the improvement for the ride comfort and handling stability of the combat vehicles. Especially most of vehicles for military purpose have bad inertial condition and severe operating condition such as the rough road driving, and need a high mobility in the emergency status. It is necessary to apply the controlled suspension system in order to improve the vehicle mobile stability and ride comfort ability of crews. A feasibility study is performed on the application of the semi-active suspension system with a magneto-rheological controlled shock absorber for a $6{\times}6$ combat vehicle. First, the dynamic simulation model of the vehicle including the control model for the semi-active suspension system was executed. Based on this model, a hardware-in-the-loop simulation(HILS) system which has a semi-active suspension controller hardware was constructed. After full vehicle simulations were performed in virtual proving courses with this system, the semi-active suspension system was proven to give better ride comfort and handling stability in comparison with the conventional passive suspension system.

실시간 Hardware-in-the-Loop 시뮬레이션을 이용한 반능동 현가시스템 특성 평가 (A Strategy to Evaluate Semi-Active Suspension System using Real-Time Hardware-in-the-Loop Simulation)

  • 최규재;노기한;유영면;김혁
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.186-194
    • /
    • 2001
  • To meet the challenge of testing increasingly complex automotive control systems, the real-time hardware-in-the-loop(HIL) simulation technology has been developed. In this paper, a strategy for evaluation of semiactive suspension systems using real-time HIL simulation is presented. A multibody vehicle model is adopted to simulate vehicle dynamic motions accurately. Accuracy of the vehicle simulation results is compared to that of the real vehicle field test and proven to be very accurate. The controller and stepping motor to adjust semi-active damper stage are equipped as external hardwares and connected to the real-time computer which has vehicle dynamic model. Open and closed loop test methods are used to evaluate a controlled suspension system and the system's operations are verified it is found that the proposed evaluation methods can be used well for the verification of semi-active suspension systems.

  • PDF

최적 가변구조제어기를 갖는 차량 능동 현가시스템의 성능특성에 관한 연구 (Performance characteristics of a vehicle active suspension system with an optimal variable structure controller)

  • 김주용;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1161-1166
    • /
    • 1993
  • The performances of a vehicle active suspension system with an optimal variable structure controller are compared to those of passive suspension system and active suspension systems with sky-hook and optimal controllers. The quater car model has a 2 DOF which accounts for vertical motions of a sprung and a unsprung masses. The transient responses are analyzed when a vehicle passing through a bump with a constant speed and the frequency responses are analyzed for white noise input at wheel. Particulary, RMS responses are also analyzed. It is shown that the optimal variable structure controller gives better performance of the vehicle active suspensio system than an optimal and a sky-hook controller.

  • PDF

GA-BASED PID AND FUZZY LOGIC CONTROL FOR ACTIVE VEHICLE SUSPENSION SYSTEM

  • Feng, J.-Z.;Li, J.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • 제4권4호
    • /
    • pp.181-191
    • /
    • 2003
  • Since the nonlinearity and uncertainties which inherently exist in vehicle system need to be considered in active suspension control law design, this paper proposes a new control strategy for active vehicle suspension systems by using a combined control scheme, i.e., respectively using a genetic algorithm (GA) based self-tuning PID controller and a fuzzy logic controller in two loops. In the control scheme, the PID controller is used to minimize vehicle body vertical acceleration, the fuzzy logic controller is to minimize pitch acceleration and meanwhile to attenuate vehicle body vertical acceleration further by tuning weighting factors. In order to improve the adaptability to the changes of plant parameters, based on the defined objectives, a genetic algorithm is introduced to tune the parameters of PID controller, the scaling factors, the gain values and the membership functions of fuzzy logic controller on-line. Taking a four degree-of-freedom nonlinear vehicle model as example, the proposed control scheme is applied and the simulations are carried out in different road disturbance input conditions. Simulation results show that the present control scheme is very effective in reducing peak values of vehicle body accelerations, especially within the most sensitive frequency range of human response, and in attenuating the excessive dynamic tire load to enhance road holding performance. The stability and adaptability are also showed even when the system is subject to severe road conditions, such as a pothole, an obstacle or a step input. Compared with conventional passive suspensions and the active vehicle suspension systems by using, e.g., linear fuzzy logic control, the combined PID and fuzzy control without parameters self-tuning, the new proposed control system with GA-based self-learning ability can improve vehicle ride comfort performance significantly and offer better system robustness.

후륜 인휠 모터 전기자동차의 구동 및 반능동 현가시스템 동시 제어를 통한 주행 성능 분석 (Driving Performance Analysis of a Rear In-wheel Motor Vehicle with Simultaneous Control of Driving Torque and Semi-active Suspension System)

  • 신슬기;최규재
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2015
  • Recently, the in-wheel motor vehicle is rapidly developed to solve energy exhaustion and environmental problems. Especially, it has the advantage of independently driving the torque control of each wheel in the vehicle. However, due to the weight increase of wheel, the comfort of vehicle riding and performance of road holding become worse. In this paper, to compensate the poor performance, a simultaneous control of the driving torque and semi-active suspension system is investigated. A vehicle model is generated using CarSim Software and validated by field tests. Co-simulation of CarSim and MATLAB/Simulink with control logics is carried out, and it is found that simultaneous control of the driving torque and semi-active suspension system can improve driving stability and durability of the in-wheel motor system.

차량 능동현가장치용 유압 제어시스템의 동적거동 해석 (Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension)

  • 정용길;이일영
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

주행 상황을 고려한 차량 능동 현가장치 제어기 설계 (Design of A Controller for Vehicle Active Suspensions Considering Driving Conditions)

  • 천종민;이종무;권순만;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권12호
    • /
    • pp.698-704
    • /
    • 2005
  • Passive suspensions with fixed design constants are very restrictive in the inherent suspension problem, the trade-off between the ride quality and the suspension travel. Active suspensions are used to solve some drawbacks of passive suspensions. In this paper, we propose a controller design for vehicle active suspensions considering variable driving conditions. Our controller estimates the current driving conditions by detecting the road frequencies gotten from Fourier Transform and decides which factor must be emphasized between the ride quality and the suspension travel. In one case of focusing on the ride quality, we use the skyhook control law and in the other case of focusing on the suspension travel, the double skyhook control law is used. The control law modified by various road situations outputs the reference force value the electro-hydraulic actuator in active suspension system must generate. To track the reference force, we adopt the sliding control law which is very useful in controlling the nonlinear system like the electro-hydraulic actuator.

철도차량 1차현가 특성에 따른 윤축 조향각 성능 분석 (Wheelset Steering Angle of Railway Vehicle according to Primary Suspension Property)

  • 허현무;안다훈;박준혁
    • 한국정밀공학회지
    • /
    • 제32권7호
    • /
    • pp.597-602
    • /
    • 2015
  • In this paper, we studied the steering performance of wheelset with primary suspension characteristics of railway vehicle. We carry out dynamic analysis and experimental study for the vehicle models which are different primary suspension characteristics. The steering angle of a vehicle model (Case 1) operating in domestic subway lines is insufficient compared with an objective steering angle for curved track. And the steering angle of a vehicle model (Case 2) with improved self-steering performance of wheelset is a little improved compare to previous vehicle model. But also Case 2 model is still insufficient compared with an objective steering angle and has its limit in steering performance. So to overcome this limit of steering performance of passive type railway vehicle, an active steering technology is being developed. In case of vehicle model with active steering system, the steering performance is improved remarkably compared to passive type vehicle model.

협궤 차량용 준능동형 현가 시스템 설계의 시험적 연구 (Experimental Study of Design for Semi - Active suspension system for Railway Vehicle with narrow gauge)

  • 이남진;김철근;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.811-815
    • /
    • 2005
  • Traditional passive suspension has limitations to meet the required specifications of high level trains, and so Active suspension system is proposed to meet the requirements with active components which could be controlled by external signal for optimized behavior of train. Active suspension is to be divided by Full active suspension and Semi-active suspension whether using the external power source or not, and though the performance of Semi-Active suspension is worse than Full one. Semi-active suspension is focused with its effectiveness per cost. Semi-Active suspension system consists of sensors, ECU (electrical control unit), and variable damper, which are to be designed to be fit for train system. And the software of ECU is to be developed for to be suited to its dynamic behavior through simulation result calculated by proven model. In this experimental study, the hardware and software of semi-active suspension system is to be realized and its performance for improvement of ride quality to be confirmed through roller rig test.

  • PDF