• Title/Summary/Keyword: Vegetation data

Search Result 1,489, Processing Time 0.025 seconds

Classification of Warm Temperate Vegetation Using Satellite Data and Management System (위성영상을 이용한 난대림 식생 분류와 관리 시스템)

  • 조성민;오구균
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.2
    • /
    • pp.231-235
    • /
    • 2004
  • Landsat satellite images were analyzed to study vegetation change patterns of warm-temperate forests from 1991 to 2002 in Wando. For this purpose, Landsat TM satellite image of 1991 and Landsat ETM image of 2002 were used for vegetation classification using ENVI image processing software. Four different forest types were set as a classification criteria; evergreen broadleaf, evergreen conifer, deciduous broadleaf, and others. Unsupervised classification method was applied to classily forest types. Although it was impossible to draw exact forest types in rocky areas because of differences in data detection time and rough resolution of image, 2002 data revealed that total 2,027ha of evergreen broadleaf forests were growing in Wando. Evergreen broadleaves and evergreen conifers increased in total areas compared to 11 years ago, but there was sharp decrease in deciduous broadleaves. GIS-based management system for warm-temperate forest was done using Arc/Info. Geographic and attribute database of Wando such as vegetation, soils, topography, land owners were built with Arc/Info and ArcView. Graphic user interface which manages and queries necessary data was developed using Avenue.

Simulation of Atmospheric CO2 Over Coastal Basin Urban Areas Using Meteorology-Vegetation Model (기상-식생 모델을 이용한 연안 분지 도시 지역의 대기 중 CO2 시뮬레이션)

  • Park, Changhyoun;Lee, Hwa Woon
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.729-739
    • /
    • 2017
  • The Weather Research and Forecasting (WRF) model and Vegetation Photosynthesis and Respiration Model (VPRM) were coupled to simulate atmospheric $CO_2$ concentrations. The performance of the WRF-VPRM to simulate regional scale $CO_2$ concentration was estimated over coastal basin areas. Either Hestia 2011(HST) or Vulcan 2002(VUL) anthropogenic $CO_2$ emission data were used in two numerical experiments for the study regions. Simulated meteorological variables were validated with ground and background $CO_2$ measurement data, and the results show that the model captured temporal variations of $CO_2$ concentration on a daily basis. $CO_2$ directional analysis revealed that the dominant $CO_2$ emission sources are located S and SW. The simulated Net Ecosystem Exchange (NEE) agreed relatively well with measured $CO_2$ fluxes at each vegetation class site, showing approximately 40% at max improvement at shrub areas.

Analysis of Relationship between Vegetation Indices and Crop Yield using KOMPSAT (KOreaMulti-Purpose SATellite)-2 Imagery and Field Investigation Data (KOMPSAT-2 위성영상과 현장 측정자료를 통한 식생지수와 수확량의 상관관계 분석)

  • Lee, Ji-Wan;Park, Geun-Ae;Joh, Hyung-Kyung;Lee, Kyo-Ho;Na, Sang-Il;Park, Jong-Hwa;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.3
    • /
    • pp.75-82
    • /
    • 2011
  • This study refers to the derivation of simple crop yield prediction equation by using KOMPSAT-2 derived vegetation index. For a 1.25 ha small farm area located in the middle part of South Korea, the KOMPSAT-2 panchromatic and multi-spectral images of 31th August 2008, 17th November 2008, and 10th September 2009 were used. The field spectral reflectance during growing period for the 6 crops (rice, potato, corn, red pepper, garlic, and bean) were measured using ground spectroradiometer and the yield was investigated. Among the 6 vegetation indices (VI), the NDVI and ARVI between measured and image derived showed high relationship with the coefficient of determination of 0.85 and 0.95 respectively. Using the 3 years field data, the NDVI and ARVI regression curves were derived, and the yields were tried to compare with the maximum VIs value.

Bamboo Distribution Map for Planning the Development of Tourism Potential in Boon Pring Andeman Area

  • Farah, Devy Atika;Dharmawan, Agus;Novianti, Vivi
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.144-152
    • /
    • 2021
  • Sanankerto is one of pilot projects for tourism villages in Indonesia due to its natural tourism potential with a 24-ha bamboo forest located in Boon Pring Andeman area. However, the distribution of existing bamboo has never been identified or mapped. Thus, the mana gement is facing difficulty in planning and developing tourism potential as well as spatial management in the area. Therefore, the objectives of this study were to identify and analyze the structure of bamboo vegetation in the Boon Pring Tourism village an d to perform vegetation mapping. The type of research was descriptive exploratory with a cluster sampling technique (i.e., a two-stage cluster) covering an area of ± 10 ha. Bamboo vegetation analysis was performed by calculating diversity index (H'), evenness index (E), and Species Richness index (R). Data were collected through observation and interviews with local people and the manager to determine zonation division. Mapping of bamboo vegetation based on zoning was processed into thematic maps using ArcG is 10.3. Micro climatic factors were measured with three replications for each sub -cluster. Data were analyzed descriptively and quantitatively. Nine species of bamboo identified. Diversity, evenness, and species richness indices differed at each location. Activities of local communities, tourists, and manager determined the presence, number, and distribution of bamboo species. These bamboo distribution maps in three zoning (utilization, buffer, and core) can be used by manager for planning and developing natural tourism potential.

On the Thermal Effect of Vegetation Canopy to the Surface Sublayer Environment (Vegetation Canopy의 접지층 환경에 대한 열적 영향 제2부 : 벼 식피층 관측)

  • 진병화;황수진
    • Journal of Environmental Science International
    • /
    • v.8 no.2
    • /
    • pp.151-154
    • /
    • 1999
  • To verify the accuracy of the numerical experiment of Part I, measurements at the matured rice canopy located around Junam reservoir were performed at August 14, 1995. According to the measured data, the foliage temperature recorded the highest value, and the ground temperature was the lowest around noon, and these results coincided with those of the numerical experiment using the combined model of Part I. From the estimation using measured data, the maximum value of the latent heat flux was 380$Wm^2$, the highest value among energy balance terms, and the energy redistribution ratio of the latent heat flux was averaged as 0.5, the highest values among redistribution ratios. These results are the same as those of the numerical experiment in tendency, but they reveals a little lower in the absolute values than those from the numerical experiment.

  • PDF

Retrieval of emissivity and land surface temperature from MODIS

  • Suh Myoung-Seok;Kang Jeon-Ho;Kim So-Hee;Kwak Chong-Heum
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.165-168
    • /
    • 2005
  • In this study, emissivity and land surface temperature (LST) were retrieved using the previously developed algorithms and Aqua/MODIS data. And sensitivity of estimated emissivity and LST to the predefined values, such as land cover, normalized difference vegetation index (NOVI) and spectral emissivity were investigated. The methods used for emissivity and LST were vegetation cover method (VCM) and four different split-window algorithms. The spectral emissivity retrieved by VCM was not sensitive to the NOVI error but more sensitive to the land cover error. The comparison of LST showed that the LST was systematically different without regard to the land cover and season. And the LST was very sensitive to the emissivity error excepting the Uliveri et al. This preliminary result indicates that more works are needed for the retrieval of reliable LST from satellite data.

  • PDF

Monitoring of Agriculture land in Egypt using NOAA-AVHRR and SPOT Vegetation data

  • Shalaby, A.;Ghar, M. Aboel;Tateishi, R.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.18-20
    • /
    • 2003
  • Land cover change detection is one of the most important trends in which remote sensing data could be used to assist strategists and the planners to decide the best land use policy. Two images of NOAA-AVHRR and SPOT vegetation acquired in November 1992 and 2002 were used to assess the changes of Agricultural lands in Egypt. A supervised classification together with two change images derived from classification result and NDVI were used to evaluate the trend and form of the change. It was found that agricultural areas increased by about 14.3 % during the study period in particular around the River Nile Delta and near the Northern Lakes of Egypt. The new cultivated lands were extracted mainly from the desert and from the salt marches areas. At the same time, parts of the agricultural lands were turned into non-cultivated land because of the urban expansion and soil degradation.

  • PDF

Mapping Method for a Detailed Stock Map Plan(Age-Class) for a Small-Scale Site for Development Work (소규모 개발 사업지의 정밀 임상도(영급) 작성 방안 연구)

  • Lee, Soo-Dong;Kim, Jeong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.4
    • /
    • pp.396-408
    • /
    • 2008
  • Gwangtan-myeon, Paju-si, Gyeonggi-do was classified as a 4 grade age-class deciduous tree forest, however as a result of vegetation survey, this site was found to consist of natural forest with deciduous trees, thus causing difficulty in judging which age class it belongs to. Subsequently, the necessity of drawing up a detailed stock map plan was raised. For this reason, this research was designed to propose a mapping method for a detailed stock map plan based on a detailed survey on actual vegetation, vegetation structure, and analysis data on tree rings. The detailed analysis of actual vegetation pattern showed that there exist 22 patterns of vegetation, in which the natural forest has 11 patterns, such as Quercus mongolica forest and Q. variabilis forest, etc. while the artificial forest was found to have 6 patterns including Castanea crenata, etc. In order to verify their age-class, this research measured a tree age by collecting 42 quadrats and 89 specimen tree cores on the basis of a detailed actual vegetation map; as a result, an artificial forest and oak trees with small diameters located at low-lying areas, was categorized as 2-grade age class(covering 29.8%), and other areas were judged to be available for land use as 3-grade age-class(covering 57.6%) while the areas judged to be 4-or-more grade age-class (covering 8.8%) was impossible for land use because they are located on a steep slope ridge line on a boundary. In case a proposed site for a small-scale development is judged as a natural forest with deciduous trees as mentioned above, it is necessary that a detailed stock map plan should be drawn up through a detailed investigation into actual vegetation and analysis of plant gathering structure & specimen trees. A detailed stock map plan includes the data that makes it possible to comprehensively judge natural property, scarcity, and diversity of vegetation; thus, it is considered that a detailed stock map plan will be useful in judging the development propriety of a small-scale site.

Agricultural drought monitoring using the satellite-based vegetation index (위성기반의 식생지수를 활용한 농업적 가뭄감시)

  • Baek, Seul-Gi;Jang, Ho-Won;Kim, Jong-Suk;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, a quantitative assessment was carried out in order to identify the agricultural drought in time and space using the Terra MODIS remote sensing data for the agricultural drought. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were selected by MOD13A3 image which shows the changes in vegetation conditions. The land cover classification was made to show only vegetation excluding water and urbanized areas in order to collect the land information efficiently by Type1 of MCD12Q1 images. NDVI and EVI index calculated using land cover classification indicates the strong seasonal tendency. Therefore, standardized Vegetation Stress Index Anomaly (VSIA) of EVI were used to estimated the medium-scale regions in Korea during the extreme drought year 2001. In addition, the agricultural drought damages were investigated in the country's past, and it was calculated based on the Standardized Precipitation Index (SPI) using the data of the ground stations. The VSIA were compared with SPI based on historical drought in Korea and application for drought assessment was made by temporal and spatial correlation analysis to diagnose the properties of agricultural droughts in Korea.

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.