• Title/Summary/Keyword: Vegetation data

Search Result 1,477, Processing Time 0.034 seconds

The Effects of Urban Park and Vegetation on Crime in Seoul and Its Planning Implication to CPTED (CPTED 요소로써 서울시 공원·녹지의 효과와 계획적 함의)

  • Cho, Min-gyun;Park, Chan;Jang, Jeong-in
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.3
    • /
    • pp.27-35
    • /
    • 2018
  • In the mandatory application of the CPTED, only negative parts of urban parks and vegetation were reflected. Therefore, this study tries to present the positive effects of urban parks and vegetation. The purpose of this study is to demonstrate the effects of urban parks and vegetation on crime occurrence and to suggest the planning implications of this to CPTED based on theory related to crime, environmental psychology, and crime occurrence analysis. This study used the crime occurrence data of Seoul, NDVI, population, distance from urban park, floating population, and the like. This study collected data from the Statistics Korea, the local government, and Landsat 8 satellite images provided by the USGS and created data of environmental variables and social variables by district using ArcGIS and statistical program. Literature analysis, correlation analysis, regression analysis, and geographically weighted regression were used to determine the relationship between crime occurrence and environmental variables, and to discuss its implication. It was found that crime occurrence has a relationship with the total population (${\beta}=.663$), the number of amusement facilities (${\beta}=.447$) and the area of a police station jurisdiction (${\beta}=.395$). This confirms that a crime rate is low when the floating population is large (${\beta}=-.241$) and vegetation vitality is high (NDVI, ${\beta}=-.281$). Vegetation vitality (NDVI) is effective in lowering violence through psychological stabilization, strengthening territoriality and improving regional image. The implications for the allocation of urban park and vegetation, program and management plan of urban park and vegetation to reduce crime occurrence have therefore been presented.

Estimating the Stand Level Vegetation Structure Map Using Drone Optical Imageries and LiDAR Data based on an Artificial Neural Networks (ANNs) (인공신경망 기반 드론 광학영상 및 LiDAR 자료를 활용한 임분단위 식생층위구조 추정)

  • Cha, Sungeun;Jo, Hyun-Woo;Lim, Chul-Hee;Song, Cholho;Lee, Sle-Gee;Kim, Jiwon;Park, Chiyoung;Jeon, Seong-Woo;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.653-666
    • /
    • 2020
  • Understanding the vegetation structure is important to manage forest resources for sustainable forest development. With the recent development of technology, it is possible to apply new technologies such as drones and deep learning to forests and use it to estimate the vegetation structure. In this study, the vegetation structure of Gongju, Samchuk, and Seoguipo area was identified by fusion of drone-optical images and LiDAR data using Artificial Neural Networks(ANNs) with the accuracy of 92.62% (Kappa value: 0.59), 91.57% (Kappa value: 0.53), and 86.00% (Kappa value: 0.63), respectively. The vegetation structure analysis technology using deep learning is expected to increase the performance of the model as the amount of information in the optical and LiDAR increases. In the future, if the model is developed with a high-complexity that can reflect various characteristics of vegetation and sufficient sampling, it would be a material that can be used as a reference data to Korea's policies and regulations by constructing a country-level vegetation structure map.

Synecological Study of the Forest Vegetation in Mt. Naeyeon, Pohang City, Korea - Focusing on the Southern Area - (내연산 산림식생에 대한 군락생태학적 연구 - 남쪽 지역을 중심으로 -)

  • Kim, Hak-Yun;Kim, Jun-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.3
    • /
    • pp.318-328
    • /
    • 2017
  • In order to provide basic data for the ecological management of forest vegetation in Southern Naeyeon Mountains, A total of 149 sample plots were selected and vegetation survey was carried out by the phytosociological method of the ZM school to classify vegetation types and to grasp ecological characteristics. The forest vegetation was divided into 10 types in terms of species composition, and had a unit hierarchy of 2 community groups, 4 communities, 6 sub-communities and 6 variants. A total of 19 types of physiognomic vegetation were identified based on uppermost dominant species, of which 18 were natural vegetation and 1 was artificial vegetation. As a result of the analysis of the importance values of constituent species, Quercus mongolica, a potentially natural vegetation element, was found to be relatively more important in most stands than other species, and excluding the artificial interference, most of the areas except for some sites would be changed to Q. mongolica forest. In order to understand the spatial distribution of forest vegetation, 1/5,000 large-scale physiognomic vegetation map was created by the uppermost dominant species. As a result, natural vegetation accounted for 98.2%, the number of vegetation patches was 733 and the average area per patch 3.93ha.

Phytosociological Vegetation Classification and Community Characteristics in Maruguem (the Ridge Line) Area of Mt. Jirisan (Yuksipryeong to Cheonwangbong), the Baekdudaegan (백두대간 지리산권역(육십령-천왕봉 구간) 마루금의 식물사회학적 유형분류 및 군집 특성)

  • Song, Ju Hyeon;Kim, Ho Jin;Lee, Jeong Eun;Cho, Hyun Je;Park, Wan Geun;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.1
    • /
    • pp.19-35
    • /
    • 2022
  • In this study, the forest vegetation structure in the Maruguem (ridge line) area from Yuksipryeong to Cheonwangbong, Baekdudaegan, was analyzed using vegetation classification, importance values, species diversity, and NMS. Data were collected using 373 quadrates in a Braun-Blanquet vegetation survey conducted from May to October 2020. Vegetation was classified into nine vegetation units, which were verified using DCA analysis. Vegetation units 1-5, which were grouped by sub-alpine region, showed high importance values, mainly for sub-alpine vegetation, such as Abies koreana, Picea jezoensis, Pinus koraiensis, and Betula ermanii. In Maruguem, which is not high above sea level, importance values for species such as Pinus densiflora and Quercus serrata were high due to the topographical characteristics of the ridge. The A. koreana community (vegetation unit 1-5), which had a relatively high average elevation, had higher species diversity compared with that of other vegetation units. According to NMS analysis, for abiotic environmental factors, there was a positive correlation between vegetation units 1, 2, 4, and 5 and elevation. Overall, this study describes all low-elevation area vegetation (P. densiflora and Lindera erythrocarpa) to high-elevation area vegetation (A. koreana and P. jezoensis) as well as the characteristics of the Baekdudaegan ridge vegetation that did not include valley vegetation.

Characteristics Analysis of Agricultural Reservoir Slope Vegetation for Judging the Leakage Zone (누수구역 판단을 위한 농업용 저수지 사면식생의 특성 분석)

  • Park, Seung Ki;Kim, Hyun Soo;Kim, Nam Ho;Lee, Jong Bo;Jung, Nam su
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • This study is a basic research with the aim of developing the method of judging the leakage zone by grasping the habitat characteristic of agricultural reservoir slope in inhabiting characteristics appear differently according to natural inhabiting environment. To this end, this study is intending to investigate slope vegetation using a quadrat technique at Sinheung reservoir located at Gwangsi-myeon, Yesan-gun, Chungnam, and to perform the analysis of importance value using relative frequency and relative coverage, etc. Also, this study intended to present the necessity of having to consider the eco-system of the relevant region in time of a reservoir slope afforestation for the time to come by suggesting that the reservoir slope vegetation after a stable period becomes similar to the regional vegetation by comparing this study result with the existing research which carried out the analysis of importance value of forest vegetation for Yesan Region. The reservoir slope vegetation is similar to the indicator species which appear in the regional forest vegetation, so there was a need to select afforestation species in the light of this in time of slope afforestation. As a result of the analysis of the importance value, this study grasped that there was an emergence characteristic similar to the vegetation at a birthplace of a forest fires because growth and development of forest trees, and perennial plants were restricted by annually implemented brush-cutting work, etc.; however, indigo plant and bush clover, etc. were found to show the characteristic differing from this. Consequently, this study was able to confirm that there is the necessity of having to create the Importance Value Table suited for reservoir slopes by region through a lot more data construction in the near future.

Differences between Sand and Gravel Bars of Streams in Patterns of Vegetation Succession

  • Lee, Chang-Seok;Cho, Yong-Chan;Shin, Hyun-Cheol;Park, Sung-Ae
    • Journal of Ecology and Environment
    • /
    • v.32 no.1
    • /
    • pp.55-60
    • /
    • 2009
  • We analyzed the factors driving succession and the structure, and dynamics of vegetation on sand and gravel bars in order to clarify the differences in vegetation succession in rivers with different river bed substrates. Woody plant communities (dominated by Salix), perennial herb communities (dominated by Miscanthus), and annual plant communities (dominated by Persicaria) appeared in that order from upstream to downstream on the sandbar. The results of DCA ordination based on vegetation data reflected a successional trend. This result suggests that sandbars grow in a downstream direction. Various vegetation types different in successional stage, such as grassland, young stands of Korean red pine (Pinus densiflora), two-layered stands of young and mature pines, and mature pine stands also occurred on gravel bars, but the vegetation in earlier successional stage was established upstream, which is the opposite to the direction found on sandbars. Those results demonstrate that the dynamics of the bed load itself could be a factor affecting vegetation succession in rivers. In fact, sands suspended by running water were transported downstream over the vegetated area of sand bar and thereby created new areas of sandbar on the downstream end of the sandbar. Meanwhile, gravel, which is heavy and thereby is shifted by strong water currents, accumulated on the upstream end of the vegetated area, and thus created new areas of gravel bar in that direction. These results showed that allogenic processes drive vegetation succession on sand and gravel bars in streams and rivers.

Comparative Analysis of Italian Ryegrass Vegetation Indices across Different Sowing Seasons Using Unmanned Aerial Vehicles (무인기를 이용한 이탈리안 라이그라스의 파종계절별 식생지수 비교)

  • Yang Seung Hak;Jung Jeong Sung;Choi Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.2
    • /
    • pp.103-108
    • /
    • 2023
  • Due to the recent impact of global warming, heavy rainfall and droughts have been occurring regardless of the season, affecting the growth of Italian ryegrass (IRG), a winter forage crop. Particularly, delayed sowing due to frequent heavy rainfall or autumn droughts leads to poor growth and reduced winter survival rates. Therefore, techniques to improve yield through additional sowing in spring have been implemented. In this study, the growth of IRG sown in Spring and Autumn was compared and analyzed using vegetation indices during the months of April and May. Spectral data was collected using an Unmanned Aerial Vehicle (UAV) equipped with a hyperspectral sensor, and the following vegetation indices were utilized: Normalized Difference Vegetation Index; NDVI, Normalized Difference Red Edge Index; NDRE (I), Chlorophyll Index, Red Green Ratio Index; RGRI, Enhanced Vegetation Index; EVI and Carotenoid Reflectance Index 1; CRI1. Indices related to chlorophyll concentration exhibited similar trends. RGRI of IRG sown in autumn increased during the experimental period, while IRG sown in spring showed a decreasing trend. The results of RGRI in IRG indicated differences in optical characteristics by sowing seasons compared to the other vegetation indices. Our findings showed that the timing of sowing influences the optical growth characteristics of crops by the results of various vegetation indices presented in this study. Further research, including the development of optimal vegetation indices related to IRG growth, is necessary in the future.

Signal of vegetation variability found in regional-scale evapotranspiration as revealed by NDVI and assimilated atmospheric data in Asia

  • Suzuki, Rikie;Masuda, Kooiti;Yasunari, Tetsuzo;Yatagai, Akiyo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.685-689
    • /
    • 2002
  • This study focused the relationship between the Normalized Difference Vegetation Index (NDVI) and the evapotranspiration (ET) temporal changes. Especially, the interannual change of the NDVI and ET from 1982 to 2000 at regional to continental scales was highlighted mainly over Asia. Monthly global NDVI data were acquired from Pathfinder AVHRR Land (PAL) data (1$\times$1 degree resolution). The monthly ET was estimated from assimilated atmospheric data provided from National Centers for Environmental Prediction (NCEP) (2.5$\times$2.5 degree resolution), and gridded global precipitation data of CPC Merged Analysis of Precipitation (CMAP) (2.5$\times$2.5 degree resolution). Significant positive correlations were found between the NDVI and ET interannual changes in May and June over western Siberia. Moreover, it was revealed that the most of area in Asia has positive correlation coefficient in May and June. These results delineate that the vegetation activity significantly contributes to the ET interannual change over extensive areas.

  • PDF

Remote Sensing Application for the Mineralized Zone Using Landsat TM Data (LANSAT TM자료에 의한 광화대조사 응용기법개발)

  • 姜必鍾;智光薰;曺民肇;崔映燮;Choi, Young Sup
    • Korean Journal of Remote Sensing
    • /
    • v.2 no.2
    • /
    • pp.79-94
    • /
    • 1986
  • TM data, which have better resolution in spatial and spectral than MSS data, were used for this study, and several Image Processing Techniques (IPT) were examined for finding the best IPT to fit to lineament extraction and mineralized zone mapping. The Ryeongnam area was selected as test area, because the area is one of major mineralized zones in Korea and its hydrothermal alteration zone is wider and deeper than other areas. The spatial filtering method is most optimum one for limeament extraction: that is, the directional spatial filtering is most efficient to detect N-S, E-W direction lineaments on the image, and the high boost filtering can be applied for mapping all direction lineaments. The ratio method was selected for detecting altered zone. It is possible to make several tens combinations in ratio with 7 bands of TM data, but considering spectral characteristics of each band of TM to the geological meterials and vegetation, the band 4/band 3(A), band 5/band 7(B), and B/A ratio methods were chosen among them. The 5/7 ratio image did not show clearly the altered area due to noise from vegetation cover, so the 4/3 ratio imae was used for trying to decrease the effect of vegetation. As a result the B/A ratio image showed quite nicely the altered zone of the test area. In conclusion, the spatial filtering is the best image processing techniques for lineament mapping, and the B/A ratio image in TM data is useful for the mineralized zone mapping.

The comparative analysis of KOMPSAT-3 based surface normalized difference vegetation index: Application of GeoEye data (다목적실용위성 3호의 지표 정규식생지수 산출 및 비교 분석: GeoEye 자료 활용)

  • Yeom, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.80-86
    • /
    • 2014
  • In this study, we the estimated surface normalized difference vegetation index by using the KOrea Multi-Purpose SATellite-3 (KOMPSAT-3) multi-spectral images for comparative analysis. The estimated NDVI from KOMPSAT-3 is used as for comparison with the high resolution GeoEye products. The geometry conditions for atmospheric effects are selected from meta files of KOMPSAT-3 bundle data. The used geometry conditions are consist of solar zenith angle, solar azimuth angle, viewing zenith angle, viewing azimuth angle, and date. And, Atmospheric effects such as attenuation, scattering and absorption were physically simulated from water vapor, ozone and aerosol information. Generally, although ground measurements are important for accurate information, in this study, MODIS atmospheric products are used as atmospheric constituents. The surface reflectance from radiative transfer model is utilized for estimating vegetation index. The present study, to reduce atmospheric and geometry conditions between KOMPSAT-3 and GeoEye having difference observation characteristics, data acquisition time is carefully determined for reliable vegetation spectral characteristics.