• Title/Summary/Keyword: Vegetable quality

Search Result 582, Processing Time 0.032 seconds

ADL Milling Characteristics for the Analysis of Cutting Force of Titanium Machining (티타늄 가공에서 절삭력 분석을 위한 ADL 밀링 가공특성)

  • Han, Jeong Sik;Jung, Jong Yun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.104-114
    • /
    • 2022
  • The purpose of using coolant in machining is both to increase a tool life and also to prevent product deformation and thus, stabilize the surface quality by lubricating and cooling the tool and the machining surface. However, a very small amount of cutting mist should be used because chlorine-based extreme pressure additives are used to generate environmental pollutants in the production process and cause occupational diseases of workers. In this study, medical titanium alloy (Ti-6Al-7Nb) was subjected to a processing experiment by selecting factors and levels affecting cutting power in the processing of the Aerosol Dry Lubrication (ADL) method using vegetable oil. The machining shape was a slot to sufficiently reflect the effect of the cutting depth. As for the measurement of cutting force, the trend of cutting characteristics was identified through complete factor analysis. The factors affecting the cutting force of ADL slot processing were identified using the reaction surface analysis method, and the characteristics of the cutting force according to the change in factor level were analyzed. As the cutting speed increased, the cutting force decreased and then increased again. The cutting force continued to increase as the feed speed increased. The increase in the cutting depth increased the cutting force more significantly than the increase in the cutting speed and the feed speed. Through the reaction surface analysis method, the regression equation for predicting cutting force was identified, and the optimal processing conditions were proposed. The cutting force was predicted from the secondary regression equation and compared with the experimental value.

Effect of Nutritional Difference between Soy Milk and Mung Milk on Fermentation

  • Gyeongseon An;Yeonghun Cho;Jungmin Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.301-301
    • /
    • 2022
  • Dairy products are important diet source for human because of their balanced essential nutrients along with various vitamins and minerals. However, lactose in milk can result in diarrhea to some consumers with lactose intolerance. Soy milk has no lactose and is suitable as a substitute for diary milk in accordance with recent trend of replacing animal food with vegetable food. However, polysaccharides in soy milks are difficult for humans to digest, leading to flatulence. These polysaccharides can be decomposed into monosaccharides by lactic acid bacteria, and fermentation can improve food quality. Because mungbean has higher carbohydrate content than soybean, mung milk can be easily fermented than soy milk, resulting in vege yogurt with higher contents of lactic acid. In this study, fermentation characteristics of vege yogurt were analyzed with different ratio of soy milk and mung milk (0%, 25%, 50%, 75%, 100% and 0%+sucrose) and different fermentation time (0, 8, and 16 hours). In general, pH decreased as fermentation time increased. Overall, pH significantly decreased when the mung milk content in yogurt increased. All samples showed higher titratable acidity after fermentation and soy yogurt (mungbean 0%, 16 hours) with sucrose showed the highest value (6.825%). As fermentation time increase, viscosity increased. In 8 and 16 hours, mung milk yogurt (mungbean 100%) showed the lowest viscosity while soy milk yogurt (soybean 100%) with no sucrose showed the highest viscosity after 16 hours of fermentation. The contents of crude protein, crude fat and ash were measured for nutritional analysis. Soy milk (mungbean 0%, 0 hours) had the values of crude protein 2.9g, crude fat 1.8g, and ash 0.3g, and mung milk (mungbean 100%, 0 hours), showed the values of crude protein 1.7g, crude fat 0g, and ash 0.3g. To analyze the effect of the differences in the contents of nutrition between soy milk and mung milk on fermentation, the changes in sugar contents, and antioxidant capacity will be conducted depending on fermentation time. Our results will provide the information in researching plant beverages.

  • PDF

Synthetic Seed Development and Production for Industrialization of Eastern Bracken (고사리 산업화를 위한 인공종자 개발 및 생산)

  • Bo Kook Jang;Ju Sung Cho;Cheol Hee Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.11-11
    • /
    • 2021
  • Ferns have been consumed as food in many countries for centuries. As rich sources of protein, fiber, minerals, vitamins, essential amino acids, and fatty acids, ferns provide important nutrients to humans. Eastern bracken (Pteridium aquilinum var. latiusculum (Desv.) Underw. ex A. Heller) is the most popular edible fern in South Korea where, additionally, it has long been used as an edible wild leaf vegetable. Recently, the production of eastern brackens in South Korea (2018) has reached 14,032 tons, for an annual revenue of 83.5 billion won, and even more eastern brackens are marketed if imports are taken into account as well. Most of the common ferns can be propagated using spores. However, fern farmers cultivate seedlings through traditional propagation methods, such as root pruning or rhizome division. These propagation methods exhibit limitations in forming roots and growing-points and are labor intensive. Quality seedlings of eastern bracken can be obtained through spore propagation, but the spores are fine and difficult to handle in the field. In addition, it would require appropriate environmental control. The production of synthetic seeds using encapsulation technology is easy to establish and it can be used to achieve high productivity at low cost. Synthetic seeds contain explants embedded into a seed foam, and they overcome the limitations of micropropagation and offer the possibility of using plug seedlings. Synthetic seed matrix, such as sodium alginate, has the advantages of low cost, low toxicity, and gel stability. The present study aimed to develop and produce synthetic seeds for the commercial exploitation of eastern bracken. Furthermore, we verified spore germination and the extent of gametophyte and sporophyte development achieved with our new synthetic seeds, whose production was intended to solve current problems with the handling, storage, and transportation of eastern bracken.

  • PDF

The Potential Substitution of Oyster Shell Powder for Phosphate in Pork Patties Cured with Chinese Cabbage and Radish Powder

  • Su Min Bae;Jong Youn Jeong
    • Food Science of Animal Resources
    • /
    • v.44 no.4
    • /
    • pp.849-860
    • /
    • 2024
  • The use of natural ingredients in meat processing has recently gained considerable interest, as consumers are increasingly attracted to clean-label meat products. However, limited research has been conducted on the use of natural substitutes for synthetic phosphates in the production of clean-label meat products. Therefore, this study aimed to explore the potential of oyster shell powder as a substitute for synthetic phosphates in pork patties cured with Chinese cabbage or radish powders. Four different groups of patties were prepared using a combination of 0.3% or 0.6% oyster shell powder and 0.4% Chinese cabbage or radish powder, respectively. These were compared with a positive control group that contained added nitrite, phosphate, and ascorbate and a negative control group without these synthetic ingredients. The results showed that patties treated with oyster shell powder had lower (p<0.05) cooking loss, thickness and diameter shrinkage, and lipid oxidation than the negative control but had lower (p<0.05) residual nitrite content and curing efficiency than the positive control. However, the use of 0.6% oyster shell powder adversely affected the curing process, resulting in a decreased curing efficiency. The impact of the vegetable powder types tested in this study on the quality attributes of the cured pork patties was negligible. Consequently, this study suggests that 0.3% oyster shell powder could serve as a suitable replacement for synthetic phosphate in pork patties cured with Chinese cabbage or radish powders. Further research on the microbiological safety and sensory evaluation of clean-label patties during storage is required for practical applications.

Effect of 1-methylcyclopropene Treatment on Extension of Freshness and Storage Potential of Fresh Ginseng (1-methylcyclopropene 처리의 수삼의 신선도 유지 및 저장성 연장 효과)

  • Park, Me-Hea;Shin, Yu-Su;Kim, Sun-Ju;Kim, Ji-Gang
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.308-316
    • /
    • 2013
  • Fresh ginseng has a limited storage life due to the quality change caused by microbial spoilage as well as physiological deterioration. The present study investigated the effects of 1-methylcyclopropene (1-MCP) treatment, an inhibitor of ethylene action, on the microbial growth and quality maintenance of fresh ginseng during storage. Harvested fresh ginsengs were treated with $1{\mu}L{\cdot}L^{-1}$ 1-MCP for 20 hours at $4^{\circ}C$ and then stored at room temperature (RT) for 18 days or low temperature ($4^{\circ}C$) for 160 days. After 18 days of storage at RT, the percentage weight loss in 1-MCP treated fresh ginseng (8.3%) is lower than that of control (10.1%). During long-term storage at $4^{\circ}C$, weight losses were increased slightly until 120 days without difference between non-treated and 1-MCP ginsengs. In contrast, after 120 days of storage at $4^{\circ}C$, higher increase in weight loss was observed in non-treated ginsengs than in 1-MCP treated ginsengs. Respiration rate and ethylene production of fresh ginseng were reduced by 1-MCP treatments at RT. The 1-MCP treatment also resulted in lower microbial population compared to those of non-treated ginsengs at RT. However, in ginsengs stored at $4^{\circ}C$ for short-term (45 days), no differences were noted in weight loss and microbial population between 1-MCP treated and non-treated ginsengs. Major ginsenosides was not changed by 1-MCP treatment during the 7 days of storage at RT. Results suggest that 1-MCP treatment can be used to maintain the freshness of ginseng at room temperature for short term storage and at low temperature for long term storage. 1-MCP treatment could be applied on fresh ginseng to avoid deleterious effect of exogenous ethylene during storage and shipping.

Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils (식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화)

  • Lee, Tae Sung;Lee, Yong Hwa;Kim, Kwang Soo;Kim, Wook;Kim, Kwan Su;Jang, Young Seok;Park, Kwang Geun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.624-632
    • /
    • 2012
  • As there have been lately many worldwide resource challenges such as potential exhaustion of fossil fuels, sudden rise of oil price and ever-rising grain pricing due to global food crisis, there have been more interests focused on recycling vegetable oils and fats into clean natural fuel and producing new resources based on waste cooking oil as a part of reusing waste resources. An Experiment was performed by using ratio of 50:50, 75:25 (w/w) mixture of based rapeseed oil, camellia oil, and olive oil. 50:50, 25:75 (w/w) mixture of based palm oil. The result was that the oleic acid ($C_{18:1}$) got the lowest percentage of 42.8%, when we combined the mixture of rapeseed oil and soybean oil. While the highest percentage of 72.1% was when the mixture of camellia oil and rapeseed oil were combined at 50:50 ratio. In 75:25 (w/w) case, mixture of rapeseed oil and soybean oil got the lowest. The highest ratio was the mixture of camellia oil and olive oil. Based on the component of palm oil, the total saturated fatty acid was decreased. It is expected that stabilizing oxidation through controlling of fatty acid after mixture and that liquidity at a low temperature. The acid value indicated that stabilizing oxidation got a range of highest to lowest. Camellia oil ranked as the highest, followed by olive oil, and the oil seeds as the lowest in rank. Controlling iodine value through mixture and improvement of stabilizing oxidation will provide a good quality. The quality of color has no significant change about mixture in ratio and maintenance. The reduction of the cost of refining process is expected by controling of mixture ratio at biodiesel production in the future.

Application of White Light Emitting Diodes to Produce Uniform Scions and Rootstocks for Grafted Fruit Vegetable Transplants (과채류 접목 시 균일한 접수와 대목 생산을 위한 백색 LED의 적용)

  • Hwang, Hyunseung;Chun, Changhoo
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.14-21
    • /
    • 2022
  • Uniform scions and rootstocks should be produced to ensure grafting success. Light quality is an important environmental factor that regulates seedling growth. The effects of warm- and cool-white light emitting diode (LED) ratios on seedling growth were investigated. Scions and rootstocks of cucumber, tomato, and watermelon were grown in a closed transplant production system using LED as the sole lighting source. The LED treatments were W1C0 (only warm-white), W1C1 (warm-white: cool-white = 1:1), W3C1 (warm-white: cool-white = 3:1), and W5C2 (warm-white: cool-white = 5:2). The seedlings grown in W1C1 had the shortest hypocotyls, and the seedlings grown in W1C0 had the longest hypocotyls among the three tested vegetables. The hypocotyls of watermelon scions, watermelon rootstocks, and tomato rootstocks were shortest in W1C1, followed by those in W3C1, W5C2, and W1C0, but there was no significant difference between W3C1 and W5C2, which remained the same as the ratio of cool-white LEDs increased. In addition, tomato scions had the first and second longest hypocotyls in W1C0 and W3C1, respectively, and the shortest hypocotyls in W5C2 and W1C1, along with W5C2 and W1C1, although the difference was not significant. The stem diameter was highest in W1C0 except for tomato seedlings and rootstocks of watermelon. The shoot fresh weight of scions and rootstocks of cucumber and watermelon and the root fresh weight of cucumber scions were lowest in W1C1. These results indicated that different ratios of LED lighting sources had a strong effect on the hypocotyl elongation of seedlings.

The Monitoring of Agricultural Environment in Daegwallyeong Area (대관령 지역의 농업환경 모니터링)

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Lee, Jeong-Ju;Hwang, Hyun-Ah;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1027-1034
    • /
    • 2011
  • In order to provide the basic information on the agricultural environment in Daegwallyeong Highland, the characters of weather, water, and soil quality were investigated. The meteorological characteristics was monitored by automatic weather system (AWS) at 17 sites. The quality of water for samples were collected monthly at 24 sites depending on landuse style. Soil samples were collected from a forest, grassland, and the major vegetable cultivation areas such as potato, carrot, Chinese cabbage, onion, head lettuce, and welsh onion field. The weather showed the mountain climate, and the average yearly temperature is $6.4^{\circ}C$, the average temperature in January is $-7.6^{\circ}C$ and the average temperature in July is $19.1^{\circ}C$, and the change of temperature on the districts of Daegwallyeong is severe. The yearly record of precipitation shows 1717.2 mm. The water quality of crop field was worse than forest or grassland in Daewallyeong highland. In 2005, annual T-N, T-P, SS distribution of Chinese cabbage field showed 7.4~11.3, 0.061~0.1, and $3.0{\sim}53.0mg\;L^{-1}$. The potato field showed 3.1~7.2, 0.019~0.056 and $0.5{\sim}3.0mg\;L^{-1}$, respectively. Being compared of water quality between potato field and chinese cabbage field, it showed that the water quality of Chinese cabbage field was worse than potato field. On farming, the soil of crop cultivation showed pH 5.6 to 6.8, $18.0{\sim}42.4g\;kg^{-1}$ of OM, $316{\sim}658mg\;kg^{-1}$ of Avail. $P_2O_5$. The content of cations showed $0.41{\sim}0.88cmol_c\;kg^{-1}$ of Exch. K, $3.73{\sim}7.07cmol_c\;kg^{-1}$ of Exch. Ca and $1.17{\sim}1.90cmol_c\;kg^{-1}$ of Exch. Mg.

Quality Characteristics of Kimchi Added with Blue Crab (꽃게를 첨가한 김치의 품질특성)

  • Kim, Ji-Hyun;Park, Gi-Soon
    • Culinary science and hospitality research
    • /
    • v.20 no.2
    • /
    • pp.246-259
    • /
    • 2014
  • This study was carried out to investigated the quality characteristics of kimchi, made by adding blue crab. Kimchi is made into a fermented vegetable food by adding red pepper powder, garlic, ginger and fermented salted fish to the salted cabbage or radish. Chitin/chitosan, found in the shell of crab is the biopolymer. Chitin possesses many beneficially biological properties. Salt consumption impacts on human health problems such as hypertension and cardiovascular disease. In this study, we hypothesized that kimchi added with raw blue crab would reduce excessive salt consumption and increase protein supplementation. We analyzed lactic acid bacteria level, pH, acidity, salinity and free amino acid of kimchi added with blue crab during 1, 15 and 30 days storage period at $5^{\circ}C$. Lactic acid bacteria, pH, salinity increased significantly in kimchi added with blue crab compared to the control. Accordingly, this result suggested that kimchi should be manufactured by adding raw fish rather than fermented salted fish.

Analysis of Chemical Factors Determining Taste of Soybean Sprouts (콩나물 식미 결정 성분 요인 분석)

  • Hwang, In-Taek;Lee, Kyong-Ae;Kim, Hee-Seon;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.58 no.4
    • /
    • pp.347-352
    • /
    • 2013
  • Soybean sprout is a year-round traditional vegetable that is easily produced and relatively inexpensive in Korea. In addition, the sprout is known as a good source of protein, vitamins and minerals. The quality of the soybean sprout has been mainly evaluated only by its appearance like length, width, color, and the others without considering any odor or taste attributes. We studied the chemical factors affecting taste of soy sprouts cultivated with 5 recommended soybean cultivars through evaluation of chemical constituents in relation to their sensory characteristics. Correlation coefficient among the chemical constituents and sensory characteristics of soybean sprout showed that the linolenic acid and Ca contents were positively correlated with total acceptability of soybean sprout and histidine, aspartic acid, and serine showed a negative association with beany odor of soybean sprout. Multiple regression analysis was done to formulate selection criteria for good taste of soy sprout. The estimation of step-wise regression analysis conducted by 47 chemical components for major quality-related characteristics showed that linolenic acid and mineral contents were the main components increasing the acceptability of soybean sprout.