• Title/Summary/Keyword: Vegetable breeding

Search Result 129, Processing Time 0.027 seconds

Development of Clubroot Resistant Doubled-Haploid Inbred Lines in Kimchi Cabbage (Chinese Cabbage) (Brassica rapa L.)

  • Park, Suhyoung;Jang, Hayoung;Park, Min Young
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.37-37
    • /
    • 2015
  • Kimchi cabbage (Chinese cabbage), radish and Cabbage are major Brassicaceae vegetables in Korea. Especially, we can easily develop whole plant from one microspore in Kimchi cabbage. To develop clubroot resistant doubled-haploid (DH) inbred lines, we pollinated a clubroot resistant turnip of 'IT 033820' with a Kimchi cabbage (Chinese cabbage) inbred of 'BP 079'. More than 85 DH inbred lines were developed from this combination. We screened about 400 materials including these DH inbred lines, commercial cultivars and breeding materials during 3 years using hydroponic system after inoculating single spore isolation race 4(SSI-04) inoculate. One inbred line derived from this combination selected as clubroot resistant and registered as 'Wonkyo20036ho'. We inoculated 26 DH inbred lines derived from 'Zoong-baek 2ho' using SSI-4, the percent of resistant plants varied from 0 to 83%. However the horticultural traits of highly resistant DH inbred line was poor. Thus we selected one DH line showing 77% resistant with yellow inner leaf and maid good head, was registered as 'Wonkyo20034ho'. Another DH inbred line derived from Korean variety of 'Wol-dong' showing 86% resistant was registered as 'Wonkyo20037ho'. Other DH inbred lines were derived from Chinese cultivar of 'Choon-hi-go-hang-wang' and 'Hwang-shim-zo48' showed 80 and 71% resistant, respectively, was also selected for registration. Even though DH inbred lines derived from turnip showed highly resistant to SSI-04 and provincial inoculate, they showed poor characteristics in horticultural traits. However, commercial seed companies showed interesting for adapting these DH inbred lines in commercial breeding.

  • PDF

Marker-assisted Genotype Analysis of Bulb Colors in Segregating Populations of Onions (Allium cepa)

  • Kim, Sunggil;Bang, Haejeen;Yoo, Kil-Sun;Pike, Leonard M.
    • Molecules and Cells
    • /
    • v.23 no.2
    • /
    • pp.192-197
    • /
    • 2007
  • Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.

Genetic Diversity and Population Structure of the Xanthomonas campestris pv. campestris Strains Affecting Cabbages in China Revealed by MLST and Rep-PCR Based Genotyping

  • Chen, Guo;Kong, Congcong;Yang, Limei;Zhuang, Mu;Zhang, Yangyong;Wang, Yong;Ji, Jialei;Fang, Zhiyuan;Lv, Honghao
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.476-488
    • /
    • 2021
  • Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot for cruciferous vegetables worldwide, especially for the cole crops such as cabbage and cauliflower. Due to the lack of resistant cabbage cultivars, black rot has brought about considerable yield losses in recent years in China. Understanding of the pathogen features is a key step for disease prevention, however, the pathogen diversity, population structure, and virulence are largely unknown. In this study, we studied 50 Xcc strains including 39 Xcc isolates collected from cabbage in 20 regions across China, using multilocus sequence genotyping (MLST), repetitive DNA sequence-based PCR (rep-PCR), and pathogenicity tests. For MLST analysis, a total of 12 allelic profiles (AP) were generated, among which the largest AP was AP1 containing 32 strains. Further cluster analysis of rep-PCR divided all strains into 14 DNA groups, with the largest group DNA I comprising of 34 strains, most of which also belonged to AP1. Inoculation tests showed that the representative Xcc strains collected from diverse regions performed differential virulence against three brassica hosts compared with races 1 and 4. Interestingly, these results indicated that AP1/DNA I was not only the main pathotype in China, but also a novel group that differed from the previously reported type races in both genotype and virulence. To our knowledge, this is the first extensive genetic diversity survey for Xcc strains in China, which provides evidence for cabbage resistance breeding and opens the gate for further cabbage-Xcc interaction studies.

Developing genetic resources for pre-breeding in Brassica oleracea L.: an overview of the UK perspective

  • Walley, Peter G.;Teakle, Graham R.;Moore, Jonathan D.;Allender, Charlotte J.;Pink, David A.C.;Buchanan-Wollaston, Vicky;Barker, Guy C.
    • Journal of Plant Biotechnology
    • /
    • v.39 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • The vegetable brassicas are an important crop worldwide and are of significant commercial value. In order to ensure our targets for food security are met it is important that these crops are continually improved to increase sustainability of production, increase nutritional quality and reduce waste. Development of resistances against both biotic and abiotic stress are recognised as being key. Plant breeding plays a vital role in addressing these issues through the development of new and improved varieties. This continued improvement is becoming evermore dependent on our ability to identify and introgress beneficial alleles from 'exotic' germplasm into elite breeding material. Increasingly, more diverse germplasm such as those found in genebanks is being screened for benificial allelic variation, however, plant breeders often find it difficult to make use of such material due to the time required to remove undesirable characteristics from progeny due to linkage drag. This article describes how we have attempted to overcome this and develop resources that make the diversity available within the $Brassica$ $oleracea$ genepool more accessible.

Marker Development for Erect versus Pendant-Orientated Fruit in Capsicum annuum L.

  • Lee, Heung-Ryul;Cho, Myeong-Cheoul;Kim, Hyoun-Joung;Park, Sung-Woo;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.548-553
    • /
    • 2008
  • The erect habit of fruit setting is a unique characteristic of ornamental peppers and wild pepper species. The erect habit is known to be controlled by the up locus on pepper (Capsicum annuum L.) chromosome 12. The result of a genetic analysis using Saengryeog 211 (pendant), Saengryeog 213 (erect), and their $F_1$ and $BC_1$ progeny demonstrated that up is a recessive gene. To develop an up-linked marker, bulked segregant analysis (BSA) and amplified fragment length polymorphism (AFLP) were employed using 108 $F_{2:3}$ individuals. The closest AFLP marker, $A2C7_{469}$, was located at a genetic distance of 1.7 cM from the up locus and was converted into a cleaved amplified polymorphic sequence (CAPS) marker. This marker was mapped at a genetic distance of 4.3 cM from the up locus. When the CAPS was applied to seven ornamental lines and 27 breeding lines with erect fruit, these genotypes of 28 lines were correctly predicted. Thus, the CAPS marker will be useful for marker-assisted selection (MAS) of pepper breeding lines with the up allele at the early seedling stage.

Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria (박 덩굴쪼김병 저항성 검정조건 구명)

  • Kim, Sang Gyu;Lee, Oak Jin;Lee, Sun Yi;Kim, Dae Young;Huh, Yun-Chan;An, Se Woong;Jang, Yoon ah;Moon, Ji hye
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.96-102
    • /
    • 2020
  • Fusarium wilt caused by Fusarium oxysporum is a devastating disease limiting production of watermelon in Korea. The best way to control diseases is to use resistant gourd rootstock on watermelon. This study was conducted to establish an efficient screening method for resistant bottle gourd to Fusarium oxysporum f. sp. lagenaria. To develop an efficient inoculation method, incubation temperature after inoculation (15, 20, 25, and 30℃), inoculum concentration (1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), and growth stages of seedlings (7, 10, 13, and 16 days) was investigated. Disease development of Fusarium wilt of bottle gourd was little affected by differences in incubation temperature and growth stages of seedlings. But resistant lines were more susceptible and appeared more severe symptoms at the higher inoculation level. Taken together, we suggest that an effective screening method for resistant gourd plant to Fusarium wilt is to dip the roots of 10-day old seedlings in spore suspension of 1 × 105 - 1 × 106 conidia·mL-1, for 30 min, to transplant the seedlings into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25℃ for 3 weeks to develop Fusarium wilt.

Development of Molecular Markers and Application for Breeding in Chinese Cabbage (배추의 분자 마커 개발 및 육종적 활용)

  • Kim, Ho-Il;Hong, Chang Pyo;Im, Subin;Choi, Su Ryun;Lim, Yong Pyo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.745-752
    • /
    • 2014
  • Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an economically important vegetable crop as a source of the traditional food Kimchi in Korea. Although many varieties exhibiting desirable traits have been developed by the conventional selective breeding approach, breeding related to abiotic or biotic stresses, such as a particular pests or diseases, or tolerance to climatic conditions, is likely to be slow. This could be helped by an efficient method for selection from various, rapidly-evolved genetic resources on the basis of molecular markers. In particular, the Brassica genome sequencing project enables genome-wide discovery of genes or genetic variants associated with agricultural traits. We here discuss the recent progress in the field of Chinese cabbage breeding with regard to the application of molecular markers.

Genetic Diversity Based on Morphology and RAPD Analysis in Vegetable Soybean

  • Srinives, P.;Chowdhury, A.K.;Tongpamnak, P.;Saksoong, P.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.112-120
    • /
    • 2001
  • Genetic diversity of 47 East-Asian vegetable soybean was characterized by means of agro-morphological traits and RAPD markers. A field trial was conducted to evaluate 14 agro-morphological traits. To study RAPD-based DNA analysis, a total of sixty 10-mer random primers were screened. Of these, 23 polymorphic markers in 16 varieties used for screening. Among 207 markers amplified, 48 were polymorphic for at least one pairwise comparison within the 47 varieties. A higher differentiation level between varieties was observed by using RAPD markers compared to morphological markers. Correspondence analysis using both types of marker showed that RAPD data could fully discriminate between all varieties, whereas morphological markers could not achieve a complete discrimination. Genetic distances between the varieties were estimated from simple matching coefficients, ranged from 0.0 to 0.640 with an average of 0.295$\pm$0.131 for morphological traits and 0.042 to 0.625 with an average of 0.336$\pm$0.099 for RAPD data, respectively. Cluster analysis based on genetic dissimilarity of these varieties gave rise to 4 distinct groups. The clustering results based on RAPDs did not match with those based on morphological traits. Geographical distribution of most varieties in each of the groups were not well defined. The results suggested that the level of genetic diversity within this group of East-Asian vegetable soybean varieties was sufficient for a breeding program and can be used to establish genetic relationships among them with unknown or unrelated pedigrees.

  • PDF