본 논문에서는 직교 벡터 공간 변환을 이용한 새로운 음성 개성 변환 알고리즘을 제안하였다. 음성 개성 변환이란 임의 환자(source)가 가지고 있는 몇 개의 특징 변수를 다른 화자(target)의 특징 변수로 변환하는 기법이다. 본 논문에서는 LPC 켑스트럼 계수와 여기 신호의 스펙트럼, 그리고 피치 궤적을 변환하여 음성 개성변환을 구현하였다. LPC 켑스트럼 계수의 변환을 위해 직교 벡터 공간 변환 기법이 제안되었다. 이 기법은 KL(Karhunen-Loeve)변환을 이용한 principle component의 분리와 최소 자승 오차를 갖는 선형 좌표 변환을 통해 LPC 켑스트럼의 변환을 수행한다. 또한, 화자간의 운율적인 특징을 변환하기 위해 피치 궤적 변환 기법이 제안되었다. 피치 궤적 변환을 위하여 먼저 두 화자간의 기준 피치 패턴의 작성하고 기준 패턴간의 대응 관계를 추정한 후 이를 이용하여 source 화자의 피치 패턴이 target 피치 패턴으로 변환되도록 하였다. 컴퓨터를 이용한 모의 실험 결과 제안된 알고리즘은 객관적인 평가와 주관적인 평가에 있어서 우수한 성능을 나타내었다.
In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.
인터넷 쇼핑몰에서의 상품 추천을 위해 널리 사용되는 방식 중 한 가지는 상품의 특성과 고객의 특성을 비교하여 고객에 맞는 상품을 추천하는 방식이다. 이 방식은 상품이나 고객의 특성을 표현하는 자질(Feature)의 개수가 많을수록 그 중에 어떤 자질을 선택해야 더 좋은 추천 성과를 가져올 수 있는지 파악해 내는 것이 추천의 효과 및 효율성 측면에서 중요하지만 아직까지 충분히 연구되지 않은 실정이다. 본 연구에서는 인터넷 서점에서의 가상 구매실험을 바탕으로 사용자가 구매한 책 들에서 사용자를 잘 나타낼 수 있는 자질을 선택하는 방식에 대해서 벡터 스페이스 모형, TFIDF(Term Frequency-Inverse Document Frequency), Mutual Information, SVD(Singular Value Decomposition) 방식 등을 활용하여 실험하고 그 결과를 비교해본다. 실험 결과 SVD를 응용한 자질 추출 기법이 가장 좋은 성능을 나타내었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권10호
/
pp.4060-4079
/
2020
Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.
협업 필터링은 정보 과잉 문제를 해결하기 위한 정보 필터링의 주요 기법이며, 전자 상거래 분야에서 추천 시스템과 같은 응용 프로그램에서 널리 사용된다. 협업 필터링 시스템은 사용자들의 대상 항목에 대한 평가를 수집한 후 취향이 서로 비슷한 사용자들의 의견을 바탕으로 아직 평가되지 않은 항목에 대해 예측을 수행한다. 시스템의 예측 성능은 사용자들에 의해 공통적으로 평가된 항목들의 개수에 좌우된다. 그러므로 대상 항목들이 수시로 추가되거나 제거되는 동적 컬렉션의 경우 협업 필터링 알고리즘을 그대로 적용하기 어렵다. 본 논문에서는 동적 컬렉션에 대한 협업 필터링 적용 방법을 제시한다. 제안한 방법에서는 SVD 기법을 이용하여 항목들의 취향 공간을 생성한 후 과거 항목들과 새로운 항목들 간의 연관성을 구하기 위해 핵심 항목들의 클러스터를 구성한다. 이를 평가하기 위해서 사용자 평가 데이타베이스를 시간에 의해 두 부분으로 나누고, 동적으로 추가되는 상황을 시뮬레이션해석 시스템의 예측 성능을 분석했다. 이를 통해 본 방법이 동적 컬렉션에 효과적으로 적용됨을 보인다.
텍스트 데이터에 대한 다양한 분석을 위해 최근 비정형 텍스트 데이터를 구조화하는 방안에 대한 연구가 활발하게 이루어지고 있다. doc2Vec으로 대표되는 기존 문서 임베딩 방법은 문서가 포함한 모든 단어를 사용하여 벡터를 만들기 때문에, 문서 벡터가 핵심 단어뿐 아니라 주변 단어의 영향도 함께 받는다는 한계가 있다. 또한 기존 문서 임베딩 방법은 하나의 문서가 하나의 벡터로 표현되기 때문에, 다양한 주제를 복합적으로 갖는 복합 문서를 정확하게 사상하기 어렵다는 한계를 갖는다. 본 논문에서는 기존의 문서 임베딩이 갖는 이러한 두 가지 한계를 극복하기 위해 다중 벡터 문서 임베딩 방법론을 새롭게 제안한다. 구체적으로 제안 방법론은 전체 단어가 아닌 핵심 단어만 이용하여 문서를 벡터화하고, 문서가 포함하는 다양한 주제를 분해하여 하나의 문서를 여러 벡터의 집합으로 표현한다. KISS에서 수집한 총 3,147개의 논문에 대한 실험을 통해 복합 문서를 단일 벡터로 표현하는 경우의 벡터 왜곡 현상을 확인하였으며, 복합 문서를 의미적으로 분해하여 다중 벡터로 나타내는 제안 방법론에 의해 이러한 왜곡 현상을 보정하고 각 문서를 더욱 정확하게 임베딩할 수 있음을 확인하였다.
본 논문에서 우리는 다중사용자 다중입출력 하향링크 통신 시스템을 위한 새로운 빕 형성 기법을 제시한다. 최근 block-diagonalization (BD) 알고리즘이 기지국과 각 사용자들이 다중 안테나는 가지는 다중사용자 다중입출력 하향링크를 위해 제안되고 있다. 그러나, BD 알고리즘은 유저당 제공되는 스트림의 개수가 수신기의 개수보다 작은 경우에는 효율적이지 않다. BD 방법이 수신단의 결합을 고려하지 않고 채널 행렬에 기반한 space를 활용하기 때문에, 빔 형성을 위한 자유도는 수신측에서 전부 얻지 못한다. 본 논문에서 우리는 모든 사용자간의 간섭이 0이 되는 zero forcing (ZF) 조건 하에 수신 빔 형성 벡터를 최적화 한다. 우리는 반복적인 과정에 의해 최적 수신 벡터를 찾는 효율적인 알고리즘을 제안한다. 제안된 알고리즘은 수신 결합 벡터를 위해 전방향 정보인 두 phase 값을 요구한다. 또한, 우리는 일반적인 복소 단위 행렬의 분해를 이용하여 단지 한 phase 값만 필요한 또 다른 알고리즘을 제시한다. 시뮬레이션 결과는 에러 확률 관점에서 제안된 빔 형성 기법이 기존 BD 알고리즘보다 성능이 낫고 기지국에서 자유도를 이용함으로써 다이버시티 증가를 획듬함을 보여준다.
ATM과 같은 광대역 통신망을 위한 영상 부호화기는 다해상도 영상의 지원과 영상의 점진적 전송, 셀손실로 인한 피해의 최소화 등 망의 특성을 고려해야만 한다. 기존의 변환 부호화기방식으로는 이런 특성의 고려가 불가능하며, 따라서 다해상도 부호화 기법이 요구된다. 다해상도 부호화 기법으로는 기존의 대역분할 부호화가 있으나, 최근에는 웨이브렛 변환을 이용한 방법이 각광을 받고 있다. 본 논문에서는 스플라인 함수를 이용하여 설계된 웨이브렛 기저를 사용하여 대역 분할을 시도하고, 분할된 각 대역 별로 엔트로피 제한 벡터 양지화를 행하는 다해상도 영상 부호화기를 생각해 본다. 특별히 광대역 망에서의 셀 손실을 대비하기 위해 스플라인 웨이브렛으로 변환된 영상의 대역별 특성을 분석하여, 각 대역별 우선 순위를 설정하는 방법을 제안한다. 실험 결과 제안한 부호화기는 기존의 일반적인 벡터양자화기보다 약 3dB 이상의 성능 향상을 보였고, 다른 웨이브렛 기저를 사용한 엔트로피 제한 벡터양자화기 보다는 비트율에 따라서 $0.5\sim2dB$ 정도의 성능 향상을 가져옴을 볼 수 있었다.
멀티미디어 정보들이 인터넷 공간에 확산됨에 따라서 원래 정보 소유자의 권리 보호와 원본 증명 등의 문제가 대두되고 있다. DCT, DFT, DWT 등의 여러 영상 변환들을 이용하여 소유권의 징표로 워터마크를 원본 영상에 삽입하는 방법을 많이 사용하였으나, 보다 최근에는 수치해석 분야에 많이 쓰이는 SVD(Singular Value Decomposition) 방법을 부가적으로 사용하고 있다. 본 논문에서는 SVD의 특이 벡터와 동시에 Gabor 코사인과 사인 변환을 이용하여 디지털 표지 영상에 워터마크를 삽입하고 추출하는 방법을 제안한다. 워터마크가 삽입된 영상에 잡음, 공간 변형, 필터링, 압축 등의 공격을 가한 후, GCST-SVD의 워터마크 추출 알고리즘을 적용한다. 워터마킹 성능을 평가하기 위해서 삽입한 워터마크와 추출한 워터마크 사이의 유사성 척도로써 정규화한 상관계수값을 측정한다. 또한 추출한 워터마크 영상으로부터 시각적으로 직접 원본 워터마크인지를 판단한다. 가장 낮은 수직 교류 주파수 대역에 워터마크를 삽입한 실험으로부터 SVD의 특이 벡터를 이용한 워터마킹 방법은 대부분 공격에서 0.9이상의 큰 상관값과 삽입한 워터마크의 특징들을 시각적으로 파악할 수 있었다.
Guangwei Lin;Yi Zhang;Enjian Cai;Taisen Zhao;Zhaoyan Li
Smart Structures and Systems
/
제32권1호
/
pp.61-81
/
2023
This study presents an ensemble learning based Bayesian model updating approach for structural damage diagnosis. In the developed framework, the structure is initially decomposed into a set of substructures. The autoregressive moving average (ARMAX) model is established first for structural damage localization based structural motion equation. The wavelet packet decomposition is utilized to extract the damage-sensitive node energy in different frequency bands for constructing structural surrogate models. Four methods, including Kriging predictor (KRG), radial basis function neural network (RBFNN), support vector regression (SVR), and multivariate adaptive regression splines (MARS), are selected as candidate structural surrogate models. These models are then resampled by bootstrapping and combined to obtain an ensemble model by probabilistic ensemble. Meanwhile, the maximum entropy principal is adopted to search for new design points for sample space updating, yielding a more robust ensemble model. Through the iterations, a framework of surrogate ensemble learning based model updating with high model construction efficiency and accuracy is proposed. The specificities of the method are discussed and investigated in a case study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.