• 제목/요약/키워드: Vector diagnosis

검색결과 243건 처리시간 0.023초

정렬불량 진단을 위한 유전알고리듬 기반 특징분석 (Feature Analysis based on Genetic Algorithm for Diagnosis of Misalignment)

  • 하정민;안병현;유현탁;최병근
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.189-194
    • /
    • 2017
  • An compressor that is combined with the rotor and pneumatic technology has been researching for the performance of pressure. However, the control of operations, an accurate diagnosis and the maintenance of compressor system are limited though the simple structure of compressor and compression are advantaged to reduce the energy. In this paper, the characteristic of the compressor operating under the normal or abnormal condition is realized. and the efficient diagnosis method is proposed through feature based analysis. Also, by using the GA (genetic algorithm) and SVM (support vector machine) of machine learning, the performance of feature analysis is conducted. Different misalignment mode of learning data for compressor is evaluated using the fault simulator. Therefore, feature based analysis is conducted considering misalignment mode of the compressor and the possibility of a diagnosis of misalignment is evaluated.

주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발 (Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process)

  • 박재연;이창준
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

지원벡터기계를 이용한 출혈을 일으킨 흰쥐에서의 생존 예측 (Survival Prediction of Rats with Hemorrhagic Shocks Using Support Vector Machine)

  • 장경환;최재림;유태근;권민경;김덕원
    • 대한의용생체공학회:의공학회지
    • /
    • 제33권1호
    • /
    • pp.1-7
    • /
    • 2012
  • Hemorrhagic shock is a common cause of death in emergency rooms. Early diagnosis of hemorrhagic shock makes it possible for physicians to treat patients successfully. Therefore, the purpose of this study was to select an optimal survival prediction model using physiological parameters for the two analyzed periods: two and five minutes before and after the bleeding end. We obtained heart rates, mean arterial pressures, respiration rates and temperatures from 45 rats. These physiological parameters were used for the training and testing data sets of survival prediction models using an artificial neural network (ANN) and support vector machine (SVM). We applied a 5-fold cross validation method to avoid over-fitting and to select the optimal survival prediction model. In conclusion, SVM model showed slightly better accuracy than ANN model for survival prediction during the entire analysis period.

Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

  • Wei, Yuan-Hao;Wang, You-Wu;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.303-315
    • /
    • 2022
  • The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.

WLDF: Effective Statistical Shape Feature for Cracked Tongue Recognition

  • Li, Xiao-qiang;Wang, Dan;Cui, Qing
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.420-427
    • /
    • 2017
  • This paper proposes a new method using Wide Line Detector based statistical shape Feature (WLDF) to identify whether or not a tongue is cracked; a cracked tongue is one of the most frequently used visible features for diagnosis in traditional Chinese Medicine (TCM). We first detected a wide line in the tongue image, and then extracted WLDF, such as the maximum length of each detected region, and the ratio between maximum length and the area of the detected region. We trained a binary support vector machine (SVM) based on the WLDF to build a classifier for cracked tongues. We conducted an experiment based on our proposed scheme, using 196 samples of cracked tongues and 245 samples of non-cracked tongues. The results of the experiment indicate that the recognition accuracy of the proposed method is greater than 95%. In addition, we provide an analysis of the results of this experiment with different parameters, demonstrating the feasibility and effectiveness of the proposed scheme.

Prediction of unmeasured mode shapes and structural damage detection using least squares support vector machine

  • Kourehli, Seyed Sina
    • Structural Monitoring and Maintenance
    • /
    • 제5권3호
    • /
    • pp.379-390
    • /
    • 2018
  • In this paper, a novel and effective damage diagnosis algorithm is proposed to detect and estimate damage using two stages least squares support vector machine (LS-SVM) and limited number of attached sensors on structures. In the first stage, LS-SVM1 is used to predict the unmeasured mode shapes data based on limited measured modal data and in the second stage, LS-SVM2 is used to predicting the damage location and severity using the complete modal data from the first-stage LS-SVM1. The presented methods are applied to a three story irregular frame and cantilever plate. To investigate the noise effects and modeling errors, two uncertainty levels have been considered. Moreover, the performance of the proposed methods has been verified through using experimental modal data of a mass-stiffness system. The obtained damage identification results show the suitable performance of the proposed damage identification method for structures in spite of different uncertainty levels.

동적퍼지모델기반 고장진단 시스템 및 응용 (Dynamic Fuzzy Model based Fault Diagnosis System and it's Application)

  • 배상욱;이종렬;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.627-629
    • /
    • 1999
  • This paper presents a new FDI scheme based on dynamic fuzzy model(DFM) for the nonlinear system. The dynamic behavior of a nonlinear system is represented by a set of local linear models. The parameters of the DFM are identified in on-line and aggregated to generate a residual vector by the approximate reasoning. The neural network classifer learns the relationship between the residual vector and fault type and used both for the detection and isolation of process faults We apply the proposed FDI scheme to the FDI system design for a two-tank system and show the usefulness of the proposed scheme.

  • PDF

NPC 3-레벨 PWM 인버터에서 고장 발생에 따른 고장 진단과 중성점 전압 제어 (Fault Diagnosis and Neutral-Point Voltage Control according to Faults for a Three-level Neutral-Point-Clamped PWM Inverter)

  • 손호인;김태진;강대욱;현동석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 추계학술대회 논문집
    • /
    • pp.11-16
    • /
    • 2003
  • The 3-level converter/inverter system is very efficient in the ac motor drives of high voltage and high power application. This paper proposed a simple method to diagnose faults using change of current vector pattern in space vector diagram when the faults occurrence in the 3-level inverter and a control method that can protect system from unbalance of the neutral point voltage according to faults. The validity of the proposed method is demonstrated by the simulation results.

  • PDF

Improvement of an Early Failure Rate By Using Neural Control Chart

  • Jang, K.Y.;Sung, C.J.;Lim, I.S.
    • International Journal of Reliability and Applications
    • /
    • 제10권1호
    • /
    • pp.1-15
    • /
    • 2009
  • Even though the impact of manufacturing quality to reliability is not considered much as well as that of design area, a major cause of an early failure of the product is known as manufacturing problem. This research applies two different types of neural network algorithms, the Back propagation (BP) algorithm and Learning Vector Quantization (LVQ) algorithm, to identify and classify the nonrandom variation pattern on the control chart based on knowledge-based diagnosis of dimensional variation. The performance and efficiency of both algorithms are evaluated to choose the better pattern recognition system for auto body assembly process. To analyze hundred percent of the data obtained by Optical Coordinate Measurement Machine (OCMM), this research considers an application in which individual observations rather than subsample means are used. A case study for analysis of OCMM data in underbody assembly process is presented to demonstrate the proposed knowledge-based pattern recognition system.

  • PDF

SVM기법을 이용한 진동계의 고장진단에 관한 연구 (Abnormal Diagnostics of Vibration System using SVM)

  • 고광원;오용설;정근용;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.932-937
    • /
    • 2003
  • When oil pressure of damper is lost or relative stiffness of spring drops in vibration system, it can be fatally dangerous situation. A fault diagnosis method for vibration system using Support Vector Machine(SVM)is suggested in the paper. SVM is used to classify input data or applied to function regression. System status can be classified by judging input data based on optimal separable hyperplane obtained using SVM which learns normal and abnormal status. It is learned from the relationship of system state variables in term of spring, mass and damper. Normal and abnormal status are learned using phase plane as in put space, then the learned SVM is used to construct algorithm to predict the system status quantitatively

  • PDF