• Title/Summary/Keyword: Vector Mode

Search Result 520, Processing Time 0.025 seconds

Trust-aware secure routing protocol for wireless sensor networks

  • Hu, Huangshui;Han, Youjia;Wang, Hongzhi;Yao, Meiqin;Wang, Chuhang
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.674-683
    • /
    • 2021
  • A trust-aware secure routing protocol (TSRP) for wireless sensor networks is proposed in this paper to defend against varieties of attacks. First, each node calculates the comprehensive trust values of its neighbors based on direct trust value, indirect trust value, volatilization factor, and residual energy to defend against black hole, selective forwarding, wormhole, hello flood, and sinkhole attacks. Second, any source node that needs to send data forwards a routing request packet to its neighbors in multi-path mode, and this continues until the sink at the end is reached. Finally, the sink finds the optimal path based on the path's comprehensive trust values, transmission distance, and hop count by analyzing the received packets. Simulation results show that TSRP has lower network latency, smaller packet loss rate, and lower average network energy consumption than ad hoc on-demand distance vector routing and trust based secure routing protocol.

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Fareed, Khurram;Safeer, Muhammad;Khedher, Khaled Mohamed;Ahmad, Manzoor;Naeem, M. Nawaz;Qazaq, Amjad;Qahtani, Abdelaziz Al;Mahmoud, S.R.;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

Analysis of Doubly Fed Variable-Speed Pumped Storage Hydropower Plant for Fast Response (빠른 응답성을 갖는 가변속 DFIM 분석)

  • Sun, Jinlei;Seo, Joungjin;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.425-430
    • /
    • 2022
  • A pumped storage power station is an important means to solve the problem of peak load regulation and ensures the safety of power grid operation. The doubly fed variable-speed pumped storage (DFVSPS) system adopts a doubly fed induction machine (DFIM) to replace the synchronous machine used in traditional pumped storage. The stator of DFIM is connected to the power grid, and the three-phase excitation windings are symmetrically distributed on the rotor. Excitation current is supplied by the converter. The active and reactive power of the unit can be quickly adjusted by adjusting the amplitude, frequency, and phase of the rotor-side voltage or current through the converter. Compared with a conventional pumped storage hydropower station (C-PSH), DFVSPS power stations have various operating modes and frequent start-up and shutdown. This study introduces the structure and principle of the DFVSPS unit. Mathematical models of the unit, including a model of DFIM, a model of the pump-turbine, and a model of the converter and its control, are established. Fast power control strategies are proposed for the unit model. A 300 MW model of the DFVSPS unit is established in MATLAB/Simulink, and the response characteristics in generating mode are examined.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

Shape model and spin state of non-principal axis rotator (5247) Krylov

  • Lee, Hee-Jae;Durech, Josef;Kim, Myung-Jin;Moon, Hong-Kyu;Kim, Chun-Hwey
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.45.2-45.2
    • /
    • 2019
  • The main-belt asteroid (5247) Krylov is known as a Non-Principal Axis (NPA) rotator. However, the shape model and spin state of this asteroid were not revealed. The physical model of an asteroid including spin state and shape is regarded to be important to understand its physical properties and dynamical evolution. Thus, in order to reconstruct the physical model of Kryolv, we applied the light curve inversion method using not only the optical light curves observed with ground-based telescopes in three apparitions during 2006, 2016, and 2017, but also the infrared light curves obtained with the Wide-field Infrared Survey Explorer (WISE) in 2010. We found that it is rotating in Short Axis Mode (SAM) with the rotation and precession periods of 368.71 hr and 67.277 hr, respectively. The orientation of the angular momentum vector is (298°, -58°) in the ecliptic coordinate system. The ratio of moments of inertia of the longest axis to the shortest axis is Ia/Ic = 0.36; the ratio of moments of inertia of the intermediate axis to the shortest axis is Ib/Ic = 0.96. Finally, the excitation level of this asteroid is found to be rather low with a ratio of the rotational kinetic energy to the basic spin state energy as E/E0 ≃ 1.024. We will briefly discuss the possible evolutionary process of Krylov in this presentation.

  • PDF

Optimized Implementation of PIPO Lightweight Block Cipher on 32-bit RISC-V Processor (32-bit RISC-V상에서의 PIPO 경량 블록암호 최적화 구현)

  • Eum, Si Woo;Jang, Kyung Bae;Song, Gyeong Ju;Lee, Min Woo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.167-174
    • /
    • 2022
  • PIPO lightweight block ciphers were announced in ICISC'20. In this paper, a single-block optimization implementation and parallel optimization implementation of PIPO lightweight block cipher ECB, CBC, and CTR operation modes are performed on a 32-bit RISC-V processor. A single block implementation proposes an efficient 8-bit unit of Rlayer function implementation on a 32-bit register. In a parallel implementation, internal alignment of registers for parallel implementation is performed, and a method for four different blocks to perform Rlayer function operations on one register is described. In addition, since it is difficult to apply the parallel implementation technique to the encryption process in the parallel implementation of the CBC operation mode, it is proposed to apply the parallel implementation technique in the decryption process. In parallel implementation of the CTR operation mode, an extended initialization vector is used to propose a register internal alignment omission technique. This paper shows that the parallel implementation technique is applicable to several block cipher operation modes. As a result, it is confirmed that the performance improvement is 1.7 times in a single-block implementation and 1.89 times in a parallel implementation compared to the performance of the existing research implementation that includes the key schedule process in the ECB operation mode.

Expression of SARS-3CL Protease in a Cell-Free Protein Synthesis System (무세포 단백질 합성법을 이용한 활성형 SARS-3CL protease의 발현)

  • Park, Sun-Joo;Kim, Yong-Tae
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.552-558
    • /
    • 2012
  • Severe acute respiratory syndrome (SARS) is a severe respiratory infectious disease caused by a novel human coronavirus, SARS-CoV. The 3CL protease is a key enzyme in the proteolytic processing of replicase polyprotein precursors, pp1a and pp1ab, which mediate all the functions required for viral genomic replication and transcription. Therefore, this enzyme is a target for the development of chemotherapeutic agents against SARS. A large quantity of active SARS-3CL protease is required for development of anti-SARS agents. Here we have constructed overexpression vector for the production of the SARS-3CL protease. The gene encoding SARS-3CL protease was amplified using polymerase chain reaction and cloned into the pET29a expression vector, resulting in pET29a/SARS-3CLP. Recombinant SARS-3CL protease was successfully synthesized by the dialysis mode of the cell-free protein expression system, and purified by three-step fast protein liquid chromatography using HighQ and MonoP column chromatographies and Sephacryl S-300 gel filtration. In addition, the produced SARS-3CL protease was found to be an active mature form. This study provides efficient methods not only for the development of anti-SARS materials from natural sources, but also for the study of basic properties of the SARS-3CL protease.

Fast Coding Unit Decision Algorithm Based on Region of Interest by Motion Vector in HEVC (움직임 벡터에 의한 관심영역 기반의 HEVC 고속 부호화 유닛 결정 방법)

  • Hwang, In Seo;Sunwoo, Myung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.41-47
    • /
    • 2016
  • High efficiency video coding (HEVC) employs a coding tree unit (CTU) to improve the coding efficiency. A CTU consists of coding units (CU), prediction units (PU), and transform units (TU). All possible block partitions should be performed on each depth level to obtain the best combination of CUs, PUs, and TUs. To reduce the complexity of block partitioning process, this paper proposes the PU mode skip algorithm with region of interest (RoI) selection using motion vector. In addition, this paper presents the CU depth level skip algorithm using the co-located block information in the previously encoded frames. First, the RoI selection algorithm distinguishes between dynamic CTUs and static CTUs and then, asymmetric motion partitioning (AMP) blocks are skipped in the static CTUs. Second, the depth level skip algorithm predicts the most probable target depth level from average depth in one CTU. The experimental results show that the proposed fast CU decision algorithm can reduce the total encoding time up to 44.8% compared to the HEVC test model (HM) 14.0 reference software encoder. Moreover, the proposed algorithm shows only 2.5% Bjontegaard delta bit rate (BDBR) loss.

A Study on a Model Parameter Compensation Method for Noise-Robust Speech Recognition (잡음환경에서의 음성인식을 위한 모델 파라미터 변환 방식에 관한 연구)

  • Chang, Yuk-Hyeun;Chung, Yong-Joo;Park, Sung-Hyun;Un, Chong-Kwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.112-121
    • /
    • 1997
  • In this paper, we study a model parameter compensation method for noise-robust speech recognition. We study model parameter compensation on a sentence by sentence and no other informations are used. Parallel model combination(PMC), well known as a model parameter compensation algorithm, is implemented and used for a reference of performance comparision. We also propose a modified PMC method which tunes model parameter with an association factor that controls average variability of gaussian mixtures and variability of single gaussian mixture per state for more robust modeling. We obtain a re-estimation solution of environmental variables based on the expectation-maximization(EM) algorithm in the cepstral domain. To evaluate the performance of the model compensation methods, we perform experiments on speaker-independent isolated word recognition. Noise sources used are white gaussian and driving car noise. To get corrupted speech we added noise to clean speech at various signal-to-noise ratio(SNR). We use noise mean and variance modeled by 3 frame noise data. Experimental result of the VTS approach is superior to other methods. The scheme of the zero order VTS approach is similar to the modified PMC method in adapting mean vector only. But, the recognition rate of the Zero order VTS approach is higher than PMC and modified PMC method based on log-normal approximation.

  • PDF

Snail Switches 5-FU-induced Apoptosis to Necrosis through Akt/PKB Activation and p53 Down-regulation (Snail의 Akt/PKB의 활성화와 p53의 downregulation를 통한 5-FU-induced apoptosis의 necrosis로의 전환)

  • Lee, Su-Yeon;Jeon, Hyun-Min;Ju, Min-Kyung;Kim, Cho-Hee;Jeong, Eui-Kyong;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1018-1023
    • /
    • 2012
  • Snail is a zinc finger transcription factor that induces epithelial-to-mesenchymal transition (EMT), which promotes tumor invasion and metastasis by repressing E-cadherin expression. In addition, Snail restricts the cellular apoptotic response to apoptotic stimuli or survival factor withdrawal; however, its molecular mechanism remains largely unknown. In this study, we have investigated the mechanism underlying Snail-mediated chemoresistance to 5-fluorouracil (5-FU), one of the most widely used anti-cancer drugs. When Snail was overexpressed by doxycycline (DOX) in MCF-7 #5 cells, it inhibited 5-FU-induced apoptotic cell death and switched the cell death mode to necrosis. Snail expression, either by DOX treatment in MCF-7 #5 cells or by the transfection of Snail expression vectors pCR3.1-Snail-Flg, phosphorylation-resistant pCR3.1-S104, and 107A Snail-Flg in MCF-7 cells specifically induced PTEN down-regulation/inactivation and Akt/PKB activation, without affecting ERK1/2 activity. In addition, Snail prominently suppressed 5-FU-induced increases in p53 levels. These findings demonstrate that Snail switches 5-FU-induced apoptosis to necrosis through the activation of Akt/PKB and the down-regulation of p53 levels.