• Title/Summary/Keyword: Vector Mode

검색결과 520건 처리시간 0.022초

A Study on Tracking Control of an Industrial Overhead Crane Using Sliding Mode Controller (슬라이딩모드 제어기를 이용한 산업용 천정크레인의 추종제어에 관한 연구)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • 제6권11호
    • /
    • pp.1022-1032
    • /
    • 2000
  • We propose a sliding mode controller tracking the states of a time-varying reference model. The reference model generates the desired trajectories of the states, and the sliding mode controller regulates robustly the errors between the desired states and the measured states. We apply this controller to the overhead crane. Its reference model generates the trajectories of the damped-out swing angle and the swing angular velocity to suppress the swinging motion caused by the acceleration and the deceleration of crane transportation. Also, this model generates the desired trajectories of the position and velocity of the crane. The crane model is identified from the experimental data using an orthogonal function. Kalman filtering is applied to estimate the crane states. The designed controller is simulated on a computer and is tested through a 2-ton industrial overhead crane using the vector-controlled servo motor system. It is verified that, from the simulated and experimental results, the sliding mode controller tracking a time-varying reference model works well.

  • PDF

EMI Noise Reduction with New Active Zero State PWM for Integrated Dynamic Brake Systems

  • Baik, Jae-Hyuk;Yun, Sang-Won;Kim, Dong-Sik;Kwon, Chun-Ki;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.923-930
    • /
    • 2018
  • Based on the application of an integrated dynamic brake (IDB) system that uses a PWM inverter fed-AC motor drive to operate the piston, a new active zero state PWM (AZSPWM) is proposed to improve the stability and reliability of the IDB system by suppressing the conducted electro-magnetic interference (EMI) noise under a wide range of load torque. The new AZSPWM reduces common-mode voltage (CMV) by one-third when compared to that of the conventional space vector PWM (CSVPWM). Although this method slightly increases the output current ripple by reducing the CMV, like the CSVPWM, it can be used within the full range of the load torque. Further, unlike other reduced common-mode voltage (RCMV) PWMs, it does not increase the switching power loss. A theoretical analysis is presented and experiments are performed to demonstrate the effectiveness of this method.

Efficient Mode Decision Algorithm Based on Spatial, Temporal, and Inter-layer Rate-Distortion Correlation Coefficients for Scalable Video Coding

  • Wang, Po-Chun;Li, Gwo-Long;Huang, Shu-Fen;Chen, Mei-Juan;Lin, Shih-Chien
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.577-587
    • /
    • 2010
  • The layered coding structure of scalable video coding (SVC) with adaptive inter-layer prediction causes noticeable computational complexity increments when compared to existing video coding standards. To lighten the computational complexity of SVC, we present a fast algorithm to speed up the inter-mode decision process. The proposed algorithm terminates inter-mode decision early in the enhancement layers by estimating the rate-distortion (RD) cost from the macroblocks of the base layer and the enhancement layer in temporal, spatial, and inter-layer directions. Moreover, a search range decision algorithm is also proposed in this paper to further increase the motion estimation speed by using the motion vector information from temporal, spatial, or inter-layer domains. Simulation results show that the proposed algorithm can determine the best mode and provide more efficient total coding time saving with very slight RD performance degradation for spatial and quality scalabilities.

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

Prediction of the Successful Defibrillation using Hilbert-Huang Transform (Hilbert-Huang 변환을 이용한 제세동 성공 예측)

  • Jang, Yong-Gu;Jang, Seung-Jin;Hwang, Sung-Oh;Yoon, Young-Ro
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제44권5호
    • /
    • pp.45-54
    • /
    • 2007
  • Time/frequency analysis has been extensively used in biomedical signal processing. By extracting some essential features from the electro-physiological signals, these methods are able to determine the clinical pathology mechanisms of some diseases. However, this method assumes that the signal should be stationary, which limits its application in non-stationary system. In this paper, we develop a new signal processing method using Hilbert-Huang Transform to perform analysis of the nonlinear and non-stationary ventricular fibrillation(VF). Hilbert-Huang Transform combines two major analytical theories: Empirical Mode Decomposition(EMD) and the Hilbert Transform. Hilbert-Huang Transform can be used to decompose natural data into independent Intrinsic Mode Functions using the theories of EMD. Furthermore, Hilbert-Huang Transform employs Hilbert Transform to determine instantaneous frequency and amplitude, and therefore can be used to accurately describe the local behavior of signals. This paper studied for Return Of Spontaneous Circulation(ROSC) and non-ROSC prediction performance by Support Vector Machine and three parameters(EMD-IF, EMD-FFT) extracted from ventricular fibrillation ECG waveform using Hilbert-Huang transform. On the average results of sensitivity and specificity were 87.35% and 76.88% respectively. Hilbert-Huang Transform shows that it enables us to predict the ROSC of VF more precisely.

Efficient Harmonic-CELP Based Low Bit Rate Speech Coder (효율적인 하모닉-CELP 구조를 갖는 저 전송률 음성 부호화기)

  • 최용수;김경민;윤대희
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권5호
    • /
    • pp.35-47
    • /
    • 2001
  • This paper describes an efficient harmonic-CELP speech coder by taking advantages of harmonic and CELP coders into account. According to frame voicing decision, the proposed harmonic-CELP coder adopts the RP-VSELP coder as a fast CELP in case of an unvoiced frame, or an improved harmonic coder in case of a voiced frame. The proposed coder has main features as follows: simple pitch detection, fast harmonic estimation, variable dimension harmonic vector quantization, perceptual weighting reflecting frequency resolution, fast harmonic synthesis, naturalness control using band voicing, and multi-mode. These features make the proposed coder require very low complexity, compared with HVXC coder To demonstrate the performance of the proposed coder, a 2.4 kbps coder has been implemented and compared with reference coders. From results of informal listening tests, the proposed coder showed good quality while requiring low delay and complexity.

  • PDF

Construction of a Novel Shuttle Vector for Tetragenococcus species based on a Cryptic Plasmid from Tetragenococcus halophilus

  • Min Jae Kim;Tae Jin Kim;Yun Ji Kang;Ji Yeon Yoo;Jeong Hwan Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권2호
    • /
    • pp.211-218
    • /
    • 2023
  • A cryptic plasmid (pTH32) was characterized from Tetragenococcus halophilus 32, an isolate from jeotgal, Korean traditional fermented seafood. pTH32 is 3,198 bp in size with G+C content of 35.84%, and contains 4 open reading frames (ORFs). orf1 and orf2 are 456 bp and 273 bp in size, respectively, and their translation products showed 65.16% and 69.35% similarities with RepB family plasmid replication initiators, respectively, suggesting the rolling-circle replication (RCR) mode of pTH32. orf3 and orf4 encodes putative hypothetical protein of 186 and 76 amino acids, respectively. A novel Tetragenococcus-Escherichia coli shuttle vector, pMJ32E (7.3 kb, Emr), was constructed by ligation of pTH32 with pBluescript II KS(+) and an erythromycin resistance gene (ErmC). pMJ32E successfully replicated in Enterococcus faecalis 29212 and T. halophilus 31 but not in other LAB species. A pepA gene, encoding aminopeptidase A (PepA) from T. halophilus CY54, was successfully expressed in T. halophilus 31 using pMJ32E. The transformant (TF) showed higher PepA activity (49.8 U/mg protein) than T. halophilus 31 cell (control). When T. halophilus 31 TF was subculturd in MRS broth without antibiotic at 48 h intervals, 53.8% of cells retained pMJ32E after 96 h, and only 2.4% of cells retained pMJ32E after 14 days, supporting the RCR mode of pTH32. pMJ32E could be useful for the genetic engineering of Tetragenococcus and Enterococcus species.

Using Skeleton Vector Information and RNN Learning Behavior Recognition Algorithm (스켈레톤 벡터 정보와 RNN 학습을 이용한 행동인식 알고리즘)

  • Kim, Mi-Kyung;Cha, Eui-Young
    • Journal of Broadcast Engineering
    • /
    • 제23권5호
    • /
    • pp.598-605
    • /
    • 2018
  • Behavior awareness is a technology that recognizes human behavior through data and can be used in applications such as risk behavior through video surveillance systems. Conventional behavior recognition algorithms have been performed using the 2D camera image device or multi-mode sensor or multi-view or 3D equipment. When two-dimensional data was used, the recognition rate was low in the behavior recognition of the three-dimensional space, and other methods were difficult due to the complicated equipment configuration and the expensive additional equipment. In this paper, we propose a method of recognizing human behavior using only CCTV images without additional equipment using only RGB and depth information. First, the skeleton extraction algorithm is applied to extract points of joints and body parts. We apply the equations to transform the vector including the displacement vector and the relational vector, and study the continuous vector data through the RNN model. As a result of applying the learned model to various data sets and confirming the accuracy of the behavior recognition, the performance similar to that of the existing algorithm using the 3D information can be verified only by the 2D information.

Development of Driving System for Railway Vehicle using Vector Control (백터제어를 적용한 전동차 구동 시스템 개발)

  • 김상훈;배본호;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • 제6권2호
    • /
    • pp.125-131
    • /
    • 2001
  • This paper presents a application of vector control strategy to 1.2MVA traction drive for railway vehicle. The vector control required the control of the phase and amplitude of output voltage vector. But in case of traction system for railway vehicle, the one-pulse mode is used at high speed region in order to utilize the link voltage fully. So it is impossible to control the flux and torque axis current instantaneously and independently in the region. So this paper proposes a mixed control algorithm, where the vector control strategy at low speed region and slip-frequency control strategy at high speed region is used. And precise switching technique between the two different control strategy is proposed. The proposed strategy is verified by experimental results with a 1.2MVA traction drive system with four 210kW induction motors.

  • PDF

An efficient algorithm for motion estimation in H.264 (H.264를 위한 효율적인 움직임 벡터 추정 알고리즘)

  • Jeong In Cheol;Han Jong Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제29권12C호
    • /
    • pp.1669-1676
    • /
    • 2004
  • In H.264, 7 modes {16${\times}$16, 16${\times}$8, 8${\times}$16, 8${\times}$8, 8${\times}$4, 4${\times}$8, 4${\times}$4) are used to enhance the coding efficiency. The motion vector estimation with 7 modes may require huge computing time. In this paper, to speed up the motion vector estimation procedure while the high image quality remains, we propose a motion vector refinement scheme using the temporary motion vector generated with little computation. The proposed estimation process consists of three phases: Mode decision for a 16${\times}$16 macroblock, Composing a temporary motion vector, Refinement of the temporary motion vector. We demonstrate the effectiveness of the proposed method by computer simulation. In the results, the encoding time consumed by the proposed scheme has been reduced significantly while the encoded video quality remains unchanged.