• 제목/요약/키워드: Vector Group

검색결과 449건 처리시간 0.026초

Immunization with Brucella abortus recombinant proteins protects BALB/c mice from Brucella abortus 544 infection

  • Arayan, Lauren Togonon;Tran, Xuan Ngoc Huy;Reyes, Alisha Wehdnesday Bernardo;Huynh, Tan Hop;Vu, Hai Son;Min, WonGi;Lee, Hu Jang;Kim, Suk
    • Journal of Preventive Veterinary Medicine
    • /
    • 제42권4호
    • /
    • pp.157-162
    • /
    • 2018
  • This study evaluated the protective effects of a combination of eight B. abortus recombinant proteins that were cloned and expressed into a pMal vector system and $DH5{\alpha}$: nucleoside diphosphate kinase (rNdk), 50S ribosomal protein (rL7/L12), malate dehydrogenase (rMDH), DNA starvation/stationary phase protection protein (rDps), elongation factor (rTsf), arginase (rRocF), superoxide dismutase (rSodC), and riboflavin synthase subunit beta (rRibH). The proteins were induced, purified, and administered intraperitoneally into BALB/c mice. The mice were immunized three times at weeks 0, 2, and 5 and then infected intraperitoneally (IP) with $5{\times}10^4CFU$ of virulent B. abortus 544 one week after the last immunization. The spleens were collected and the bacterial burden was evaluated at four weeks post-infection. The results showed that this combination produced a significant reduction of the bacterial burden in the spleen with a log reduction of 1.01 compared to the PBS group. Cytokine analysis revealed induction of the cell-mediated immune response in that TNF (tumor necrosis factor) and proinflammatory cytokines IL-6 (Interleukin 6) and MCP-1 (macrophage chemoattractant protein-1) were elevated significantly. In summary, vaccination with a combination of eight different proteins induced a significant protective effect indicative of a cell mediated immune response.

변분에코추적법을 이용한 제주도 지역 여름철 강수계의 이동 특성 분석 (Characteristics of Summer Season Precipitation Motion over Jeju Island Region Using Variational Echo Tracking)

  • 김권일;이호우;정성화;류근수;이규원
    • 대기
    • /
    • 제28권4호
    • /
    • pp.443-455
    • /
    • 2018
  • Nowcasting algorithms using weather radar data are mostly based on extrapolating the radar echoes. We estimate the echo motion vectors that are used to extrapolate the echo properly. Therefore, understanding the general characteristics of these motion vectors is important to improve the performance of nowcasting. General characteristics of radar-based motions are analyzed for warm season precipitation over Jeju region. Three-year summer season data (June~August, 2011~2013) from two radars (GSN, SSP) in Jeju are used to obtain echo motion vectors that are retrieved by Variational Echo Tracking (VET) method which is widely used in nowcasting. The highest frequency occurs in precipitation motion toward east-northeast with the speed of $15{\sim}16m\;s^{-1}$ during the warm season. Precipitation system moves faster and eastward in June-July while it moves slower and northeastward in August. The maximum frequency of speed appears in $10{\sim}20m\;s^{-1}$ and $5{\sim}10m\;s^{-1}$ in June~July and August respectively while average speed is about $14{\sim}15m\;s^{-1}$ in June~July and $8m\;s^{-1}$ in August. In addition, the direction of precipitation motion is highly variable in time in August. The speed of motion in Lee side of the island is smaller than that of the windward side.

A Novel Approach to COVID-19 Diagnosis Based on Mel Spectrogram Features and Artificial Intelligence Techniques

  • Alfaidi, Aseel;Alshahrani, Abdullah;Aljohani, Maha
    • International Journal of Computer Science & Network Security
    • /
    • 제22권9호
    • /
    • pp.195-207
    • /
    • 2022
  • COVID-19 has remained one of the most serious health crises in recent history, resulting in the tragic loss of lives and significant economic impacts on the entire world. The difficulty of controlling COVID-19 poses a threat to the global health sector. Considering that Artificial Intelligence (AI) has contributed to improving research methods and solving problems facing diverse fields of study, AI algorithms have also proven effective in disease detection and early diagnosis. Specifically, acoustic features offer a promising prospect for the early detection of respiratory diseases. Motivated by these observations, this study conceptualized a speech-based diagnostic model to aid in COVID-19 diagnosis. The proposed methodology uses speech signals from confirmed positive and negative cases of COVID-19 to extract features through the pre-trained Visual Geometry Group (VGG-16) model based on Mel spectrogram images. This is used in addition to the K-means algorithm that determines effective features, followed by a Genetic Algorithm-Support Vector Machine (GA-SVM) classifier to classify cases. The experimental findings indicate the proposed methodology's capability to classify COVID-19 and NOT COVID-19 of varying ages and speaking different languages, as demonstrated in the simulations. The proposed methodology depends on deep features, followed by the dimension reduction technique for features to detect COVID-19. As a result, it produces better and more consistent performance than handcrafted features used in previous studies.

Isolation of feline panleukopenia virus from Yanji of China and molecular epidemiology from 2021 to 2022

  • Haowen Xue;Chunyi Hu;Haoyuan Ma;Yanhao Song;Kunru Zhu;Jingfeng Fu;Biying Mu;Xu Gao
    • Journal of Veterinary Science
    • /
    • 제24권2호
    • /
    • pp.29.1-29.12
    • /
    • 2023
  • Background: Feline panleukopenia virus (FPV) is a widespread and highly infectious pathogen in cats with a high mortality rate. Although Yanji has a developed cat breeding industry, the variation of FPV locally is still unclear. Objectives: This study aimed to isolate and investigate the epidemiology of FPV in Yanji between 2021 and 2022. Methods: A strain of FPV was isolated from F81 cells. Cats suspected of FPV infection (n = 80) between 2021 and 2022 from Yanji were enrolled in this study. The capsid protein 2 (VP2) of FPV was amplified. It was cloned into the pMD-19T vector and transformed into a competent Escherichia coli strain. The positive colonies were analyzed via VP2 Sanger sequencing. A phylogenetic analysis based on a VP2 coding sequence was performed to identify the genetic relationships between the strains. Results: An FPV strain named YBYJ-1 was successfully isolated. The virus diameter was approximately 20-24 nm, 50% tissue culture infectious dose = 1 × 10-4.94/mL, which caused cytopathic effect in F81 cells. The epidemiological survey from 2021 to 2022 showed that 27 of the 80 samples were FPV-positive. Additionally, three strains positive for CPV-2c were unexpectedly found. Phylogenetic analysis showed that most of the 27 FPV strains belonged to the same group, and no mutations were found in the critical amino acids. Conclusions: A local FPV strain named YBYJ-1 was successfully isolated. There was no critical mutation in FPV in Yanji, but some cases with CPV-2c infected cats were identified.

Estimating the tensile strength of geopolymer concrete using various machine learning algorithms

  • Danial Fakhri;Hamid Reza Nejati;Arsalan Mahmoodzadeh;Hamid Soltanian;Ehsan Taheri
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.175-193
    • /
    • 2024
  • Researchers have embarked on an active investigation into the feasibility of adopting alternative materials as a solution to the mounting environmental and economic challenges associated with traditional concrete-based construction materials, such as reinforced concrete. The examination of concrete's mechanical properties using laboratory methods is a complex, time-consuming, and costly endeavor. Consequently, the need for models that can overcome these drawbacks is urgent. Fortunately, the ever-increasing availability of data has paved the way for the utilization of machine learning methods, which can provide powerful, efficient, and cost-effective models. This study aims to explore the potential of twelve machine learning algorithms in predicting the tensile strength of geopolymer concrete (GPC) under various curing conditions. To fulfill this objective, 221 datasets, comprising tensile strength test results of GPC with diverse mix ratios and curing conditions, were employed. Additionally, a number of unseen datasets were used to assess the overall performance of the machine learning models. Through a comprehensive analysis of statistical indices and a comparison of the models' behavior with laboratory tests, it was determined that nearly all the models exhibited satisfactory potential in estimating the tensile strength of GPC. Nevertheless, the artificial neural networks and support vector regression models demonstrated the highest robustness. Both the laboratory tests and machine learning outcomes revealed that GPC composed of 30% fly ash and 70% ground granulated blast slag, mixed with 14 mol of NaOH, and cured in an oven at 300°F for 28 days exhibited superior tensile strength.

Molecular characterization of gonadotropin-releasing hormone (GnRH) genes and their role in reproductive system of Pangasius species

  • Amirah Syafiqah Zamri;Fatin Nabilah Sahadan;Zarirah Zulperi;Fadhil Syukri;Yuzine Esa
    • Fisheries and Aquatic Sciences
    • /
    • 제27권6호
    • /
    • pp.366-378
    • /
    • 2024
  • Application of commercial hormone failed to promote breeding in certain Pangasius species due to the differences of gonadotropin-releasing hormone specific peptide with species-specific bioactivities. Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide in the reproductive system that plays a crucial role in the regulation of reproductive processes. This study was performed to determine and analyse the GnRH genes from commercially important Pangasius sp., Pangasianodon hypophthalmus and Pangasius nasutus. The GnRH1 and GnRH2 genes were amplified and cloned into TOPO vector, followed by phylogenetic analysis of a complete open reading frame (ORF) of GnRH genes. The GnRH1 and GnRH2 genes of P. hypophthalmus and P. nasutus were detected at 300 bp and 360 bp, encoded for 81 and 87 amino acids, respectively. Amino acid sequence identities revealed high homology of P. hypophthalmus and P. nasutus GnRH1 and GnRH2 genes in comparison with other fish and vertebrates. Phylogenetic tree showed that fish from various families were aggregated into a group of the same order due to their highest identity similarities. It revealed that the vertebrate formed clusters and are grouped according to their GnRH decapeptide and GnRH-associated peptide (GAP) region, indicating a close relationship among GnRH decapeptide and GAP in different vertebrate species.

토끼에서 D-luciferin의 관절강 주입에 의한 연골세포의 자연발광 영상 (Bioluminescence Imaging of Chondrocytes in Rabbits by Intraarticular Injection of D-Luciferin)

  • 문성민;민정준;오석중;강한샘;김영호;김성미;김광윤;범희승
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권1호
    • /
    • pp.54-58
    • /
    • 2007
  • 목적: Firefly luciferase (이하 Fluc)는 분자영상 분야에 가장 널리 쓰이는 리포터 유전자 중 하나이다. 발광반응의 기질로 사용되는 D-luciferin 은 가격이 비싸고 실험동물의 무게에 비례해서 기질을 주입 하므로 마우스나 렛트와 같은 소동물을 대상으로 전임상 연구가 이루어지고 있다. 본 실험실에서는 중동물인 토끼의 관절강에 D-luciferin을 국소 주입하여 발광영상을 획득하였다. 대상 및 방법: 연골세포를 일주일 동안 배양한 후 Fluc 아데노바이러스에 감염시켰다. 감염된 연골세포를 토끼의 관절강에 주입 또는 이식하였다. 착상된 무릎의 관절강부위에 D-luciferin을 국소 주입한 후 본 실험실서 보유하고 있는 CCD 카메라가 장착된 실시간 영상장비를 이용하여 날짜 별로 분자영상을 획득하였다. 결과: 착상되어진 토끼의 관절강 부위에 기질을 국소주입하여 영상을 성공적으로 획득하였다. 연골세포 주입 및 이식 후 1일째부터 토끼의 관절강에서 빛이 방출되었으며 토끼의 관절강에 주입하는 것보다 이식하는 방법이 강한 빛을 방출함을 알 수 있었다. 또한 7일째까지 토끼의 관절강에 연골세포를 이식한 것이 주입한 것보다 총 광량이 5배에서 10배까지 강하게 나타남을 확인하였고 9일째에는 약 10배정도 강하게 나타났다. 결론: 중동물인 토끼를 이용하여 Fluc을 발현하는 연골세포를 주입 또는 이식한 관절강에 D-luciferin을 국소 주입하여 영상을 성공적으로 획득하였으며, 이러한 결과를 통해 중동물에 소량의 D-luciferin 국소주입하여도 발광영상을 얻는데 충분함을 알 수 있었다.

외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향 (Effects of Physical Characteristics Factors on Ankle Joint Injury during One Leg Drop Landing)

  • 이성열;이효근;권문석
    • 한국응용과학기술학회지
    • /
    • 제37권4호
    • /
    • pp.839-847
    • /
    • 2020
  • 본 연구는 외발 착지 시 신체적 특성 요인들인 발목 유연성, 성별, Q-angle이 발목 관절 상해 요인들에 미치는 영향을 분석하는데 목적이 있었다. 이를 위해 오른발을 주발로 사용하고 체육을 전공하는 20대 남성 16명(나이: 20.19±1.78 years, 체중: 69.54±10.12 kg, 신장: 173.22±4.43 cm), 여성 16명(나이: 21.05±1.53 years, 체중: 61.75±6.97 kg, 신장: 159.34±4.56 cm)을 연구대상자로 선정하였다. 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 미치는 영향을 확인하기 위하여 첫째, 발목 상해 경험에 따른 하지 관절 움직임과 관절 모멘트의 독립 t-test를 실시하였다(α = .05). 둘째, t-test를 통하여 유의한 차이를 나타낸 변인을 종속변인으로 설정하고 발목 유연성, 성별의 차이, Q-angle을 독립변인으로 지정하여 선형다중회귀분석(Multiple Linear Regression)을 사용하였다(α = .05). 본 연구결과 발목 관절 상해를 경험한 그룹은 상해를 경험하지 않은 그룹과는 다르게 발목 관절의 내전, 무릎 관절의 내측 회전을 통한 착지 전략과 기술을 사용하는 것으로 나타났다. 또한 이러한 움직임은 발목 관절의 신전 모멘트를 증가시키고, 엉덩 관절의 신전 모멘트는 감소시키는 것으로 확인되었다. 특히 발목의 배측굴곡 유연성은 발목과 무릎의 착지전략에 영향을 미치며, 성별의 차이는 발목의 신전 모멘트에 영향을 미치는 것을 알 수 있었다. 따라서 외발 착지 시 신체적 특성 요인들이 발목 관절 상해에 영향을 미치는 요인들임을 확인 할 수 있었다.

연쇄상구균(Streptococcus mutans GS-5)의 항원단백질 AgI/II의 N-terminus절편에 대한 항체형성 (Generation of antibodies against N-terminus fragment of AgI/II protein from Streptococcus mutans GS-5)

  • 한지혜;백병주;양연미;박정렬;김재곤
    • 대한소아치과학회지
    • /
    • 제33권3호
    • /
    • pp.401-410
    • /
    • 2006
  • 치아 우식은 구강 내 미생물에 의해 치아 석회 조직의 일부가 용해되고 파괴되는 감염성 질환이다. 치아 우식의 원인균은 Streptococcus mutans와 같은 Mutans streptococci로 알려져 있고, 이 미생물이 치면에 접착하여 군집을 형성하는 능력이 균의 독성에 중요한 역할을 한다. S. mutans가 치면의 타액성 피막에 부착하는 데에는 AgI/II와 같은 세포표면의 섬유성 단백질을 매개로 한다. 그러므로, AgI/II는 S. mutans GS-5에 대한 백신 개발에 적절한 목표가 된다. 본 실험은 S. mutans GS-5로부터 AgI/II 유전자를 복제하고 염기서열분석을 하였다. 복제된 AgI/II와 앞서 보고된 S. mutans GS-5의 해당 부위의 280개의 핵산은 완벽하게 일치하였다. 복제된 유전자를 두 부위로 절단하여 형질전환을 통해 재조합 단백질인 AgI/IImr을 얻었고, 정제된 재조합 단백질을 쥐에게 주입하여 다클론 항체를 얻었다. 추출된 다클론 항체는 AgI/IImr항원단백질에 반응하였고, 대조군으로 쓰인 단백질에는 반응하지 않았다.

  • PDF

Impact of RGD Peptide Tethering to IL24/mda-7 (Melanoma Differentiation Associated Gene-7) on Apoptosis Induction in Hepatocellular Carcinoma Cells

  • Bina, Samaneh;Shenavar, Fatemeh;Khodadad, Mahboobeh;Haghshenas, Mohammad Reza;Mortazavi, Mojtaba;Fattahi, Mohammad-Reza;Erfani, Nasrollah;Hosseini, Seyed Younes
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권14호
    • /
    • pp.6073-6080
    • /
    • 2015
  • Background: Melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24), a unique tumor suppressor gene, has killing activity in a broad spectrum of cancer cells. Herein, plasmids producing mda-7 proteins fused to different RGD peptides (full RGD4C and shortened RGD, tRGD) were evaluated for apoptosis induction with a hepatocellular carcinoma cell line, Hep-G2. The study aim was to improve the apoptosis potency of mda-7 by tethering to RGD peptides. Materials and Methods: Three plasmids including mda-7, mda-7-RGD and mda-7-tRGD genes beside a control vector were transfected into Hep-G2 cells. After 72 hours incubation, cell viability was evaluated by MTT assay. In addition, the rate of apoptosis was analyzed by flow cytometry using PI/annexin staining. To detect early events in apoptosis, 18 hours after transfection, expression of the BAX gene was quantified by real time PCR. Modeling of proteins was also performed to extrapolate possible consequences of RGD modification on their structures and subsequent attachment to receptors. Results and Conclusions: In MTT assays, while all mda-7 forms showed measurable inhibition of proliferation, unmodified mda-7 protein exhibited most significant effect compared to control plasmid (P<0.001). Again, flow cytometry analysis showed a significant apoptosis induction by simple mda-7 gene but not for those RGD-fused mda-7 proteins. These findings were also supported by expression analysis of BAX gene (P<0.001). Protein modelling analysis revealed that tethering RGD at the end of IL-24/Mda7 disrupt attachment to cognate receptor, IL-20R1/IL-20R2. In conclusion, fusion of RGD4C and shortened RGD peptides to carboxyl terminal of mda7, not only reduce apoptosis property in vitro but also disrupt receptor attachment as demonstrated by protein modelling.