• Title/Summary/Keyword: Vector Flow

Search Result 672, Processing Time 0.033 seconds

Modeling properties of self-compacting concrete: support vector machines approach

  • Siddique, Rafat;Aggarwal, Paratibha;Aggarwal, Yogesh;Gupta, S.M.
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.461-473
    • /
    • 2008
  • The paper explores the potential of Support Vector Machines (SVM) approach in predicting 28-day compressive strength and slump flow of self-compacting concrete. Total of 80 data collected from the exiting literature were used in present work. To compare the performance of the technique, prediction was also done using a back propagation neural network model. For this data-set, RBF kernel worked well in comparison to polynomial kernel based support vector machines and provide a root mean square error of 4.688 (MPa) (correlation coefficient=0.942) for 28-day compressive strength prediction and a root mean square error of 7.825 cm (correlation coefficient=0.931) for slump flow. Results obtained for RMSE and correlation coefficient suggested a comparable performance by Support Vector Machine approach to neural network approach for both 28-day compressive strength and slump flow prediction.

Study on the Fluidic Thrust Vector Control Using Co-Flow Concept

  • Wu, Kexin;Jin, Yingzi;Kim, Heuy Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.675-678
    • /
    • 2017
  • In the present, various methods have been employed to obtain the lesser thrust loss. Numerical simulations have been carried out for optimizing the thrust vector control system. Thrust vector control based on coflowing shear layer is an effective method to control the primary jet direction in the absence of moving parts. Thrust vector in symmetric nozzles is acquired by secondary flow injections that result to boundary layer separation. The pressure in secondary flow inlet was varied to check the deflection angle of jet flow.

  • PDF

Enhanced Gradient Vector Flow in the Snake Model: Extension of Capture Range and Fast Progress into Concavity (Snake 모델에서의 개선된 Gradient Vector Flow: 캡쳐 영역의 확장과 요면으로의 빠른 진행)

  • Cho Ik-Hwan;Song In-Chan;Oh Jung-Su;Om Kyong-Sik;Kim Jong-Hyo;Jeong Dong-Seok
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.1
    • /
    • pp.95-104
    • /
    • 2006
  • The Gradient Vector Flow (GVF) snake or active contour model offers the best performance for image segmentation. However, there are problems in classical snake models such as the limited capture range and the slow progress into concavity. This paper presents a new method for enhancing the performance of the GVF snake model by extending the external force fields from the neighboring fields and using a modified smoothing method to regularize them. The results on a simulated U-shaped image showed that the proposed method has larger capture range and makes it possible for the contour to progress into concavity more quickly compared with the conventional GVF snake model.

Augmenting Quasi-Tree Search Algorithm for Maximum Homogenous Information Flow with Single Source/Multiple Sinks

  • Fujita, Koichi;Watanabe, Hitoshi
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.462-465
    • /
    • 2002
  • This paper presents a basic theory of information flow from single sending point to multiple receiving points, where new theories of algebraic system called "Hybrid Vector Space" and flow vector space play important roles. Based on the theory, a new algorithm for finding maximum homogenous information flow is proposed, where homogenous information flow means the flow of the same contents of information delivered to multiple clients at a time. Effective multi-routing algorithms fur tree-shape delivery rout search are presented.

  • PDF

A Computational Study of the Fluidic Thrust Vector Control Using Secondary Flow Injection (2차 유동 분사를 이용한 추력벡터 제어에 관한 수치해석적 연구)

  • Lim, Chae-Min;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.496-501
    • /
    • 2003
  • Computational study is performed to understand the fluidic thrust vectoring control of an axisymmetric nozzle, in which secondary gas injection is made in the divergent section of the nozzle. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain the different flow features in the nozzle flow. The injection flow rate is varied by means of the injection port pressure. Test conditions are in the range of the nozzle pressure ratio from 3.0 to 8.26 and the injection pressure ratio from 0 to 1.0. The present computational results show that, for a given nozzle pressure ratio, an increase of the injection pressure ratio produces increased thrust vector angle, but decreases the thrust efficiency.

  • PDF

Velocity Field Masking Technique for Coastal Engineering Experiments

  • Adibhusana, Made Narayana;Ryu, Yong-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.154-154
    • /
    • 2021
  • Since the development of Bubble Image Velocimetry (BIV) technique as the complementary technique of Particle Image Velocimetry (PIV), the application of digital imaging technique in the field of hydraulic and coastal engineering increased rapidly. BIV works very well in multi-phase flow (air-water) flows where the PIV technique doesn't. However, the velocity field obtained from BIV technique often resulted in a velocity vector on the outside of the flow (false velocity) since the Field of View (FOV) usually not only cover the air-water flow but also the area outside the flow. In this study, a simple technique of post processing velocity field was developed. This technique works based on the average of the pixel value in the interrogation area. An image of multi-phase flow of wave overtopping was obtained through physical experiment using BIV technique. The velocity calculation was performed based on the similar method in PIV. A velocity masking technique developed in this study then applied to remove the false velocity vector. Result from non-masking, manually removed and auto removed false velocity vector were presented. The masking technique show a similar result as manually removed velocity vector. This method could apply in a large number of velocity field which is could increase the velocity map post-processing time.

  • PDF

A Study of Thrust-Vectoring Nozzle Flow Using Coflow-Counterflow Concept (Coflow-Counterflow 개념을 이용한 추력벡터 노즐에서 발생하는 유동특성에 관한 연구)

  • Jung, Sung-Jae;Sanalkumar, V.R.;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.592-597
    • /
    • 2003
  • Thrust vector control using a coflow-counterflow concept is achieved by suction and blowing through a slot adjacent to a primary jet which is shrouded by a suction collar. In the present study, the flow characteristics of thrust vectoring is investigated using a numerical method. The nozzle has a design Mach number of 2.0, and the operation pressure ratio is varied to obtain various flow features of the nozzle flow. Test conditions are in the range of the nozzle pressure ratio from 6.0 to 10.0, and a suction pressure from 90kPa to 35kPa. Two-dimensional, compressible Navier-Stokes computations are conducted with RNG ${\kappa}-{\varepsilon}$ turbulence model. The computational results provide an understanding of the detailed physics of the thrust vectoring process. It is found that an increase in the nozzle pressure ratio leads to increased thrust efficiency but reduces the thrust vector angle.

  • PDF

A Motion Vector Recovery Method based on Optical Flow for Temporal Error Concealment in the H.264 Standard (H.264에서 에러은닉을 위한 OPtical Flow기반의 움직임벡터 복원 기법)

  • Kim, Dong-Hyung;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.2C
    • /
    • pp.148-155
    • /
    • 2006
  • For the improvement of coding efficiency, the H.264 standard uses new coding tools which are not used in previous coding standards. Among new coding tools, motion estimation using smaller block sizes leads to higher correlation between the motion vectors of neighboring blocks. This characteristic of H.264 is useful for the motion vector recovery. In this paper, we propose the motion vector recovery method based on optical flow. Since the proposed method estimates the optical flow velocity vector from more accurate initial value and optical flow region is limited to 16$\times$16 block size, we can alleviate the complexity of computation of optical flow velocity. Simulation results show that our proposed method gives higher objective and subjective video quality than previous methods.

Study of the Thrust Vector Control using a Secondary Flow Injection (2차 유동 분사에 의한 제트 유동의 추력 제어에 관한 연구)

  • Jung Sung-Jae;Szwaba Ryszard;Kim Heuy-Dong;Ahn Jae-Mun;Jung Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.119-122
    • /
    • 2002
  • In general, Liquid Injection Thrust Vector Control(LITVC) is accomplished by injecting a liquid into the supersonic exhaust flow through holes in the wall of the propulsion nozzle. This injection flow field is highly complicated and detailed flow physics associated with the secondary flow injection should be known far the practical design and use of the LITVC system. The present study aims at understanding the LTTVC flow field and obtaining fundamental design parameters for LITVC. The experimentations were performed in a supersonic blow-down wind tunnel. Compressed, dry air was used for both the main exhaust and injection flows but the pressures of these two flows were controlled independently. The location of the injection holes was changed and the pressures of the two streams were also changed between 2.0 and 15.0 bar. The effectiveness of LITVC was discussed in details using the results of the pressure measurements and flow visualizations

  • PDF

Velocity Vector Imaging (속도 벡터 영상 방법)

  • Kwon, Sung-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1E
    • /
    • pp.11-27
    • /
    • 2010
  • Nowadays, ultrasound Doppler imaging is widely used in assessing cardiovascular functions in the human body. However, a major drawback of ultrasonic Doppler methods is that they can provide information on blood flow velocity along the ultrasound beam propagation direction only. Thus, the blood flow velocity is estimated differently depending on the angle between the ultrasound beam and the flow direction. In order to overcome this limitation, there have been many researches devoted to estimating both axial and lateral velocities. The purpose of this article is to survey various two-dimensional velocity estimation methods in the context of Doppler imaging. Some velocity vector estimation methods can also be applied to determine tissue motion as required in elastography. The discussion is mainly concerned with the case of estimating a two-dimensional in-plane velocity vector involving the axial and lateral directions.