• Title/Summary/Keyword: Vector Field

Search Result 1,363, Processing Time 0.027 seconds

A NUMERICAL METHOD FOR THE MODIFIED VECTOR-VALUED ALLEN-CAHN PHASE-FIELD MODEL AND ITS APPLICATION TO MULTIPHASE IMAGE SEGMENTATION

  • Lee, Hyun Geun;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.1
    • /
    • pp.27-41
    • /
    • 2014
  • In this paper, we present an efficient numerical method for multiphase image segmentation using a multiphase-field model. The method combines the vector-valued Allen-Cahn phase-field equation with initial data fitting terms containing prescribed interface width and fidelity constants. An efficient numerical solution is achieved using the recently developed hybrid operator splitting method for the vector-valued Allen-Cahn phase-field equation. We split the modified vector-valued Allen-Cahn equation into a nonlinear equation and a linear diffusion equation with a source term. The linear diffusion equation is discretized using an implicit scheme and the resulting implicit discrete system of equations is solved by a multigrid method. The nonlinear equation is solved semi-analytically using a closed-form solution. And by treating the source term of the linear diffusion equation explicitly, we solve the modified vector-valued Allen-Cahn equation in a decoupled way. By decoupling the governing equation, we can speed up the segmentation process with multiple phases. We perform some characteristic numerical experiments for multiphase image segmentation.

On the Property of Harmonic Vector Field on the Sphere S2n+1

  • Han, Dongsoong
    • Honam Mathematical Journal
    • /
    • v.25 no.1
    • /
    • pp.163-172
    • /
    • 2003
  • In this paper we study the property of harmonic vector fields. We call a vector fields ${\xi}$ harmonic if it is a harmonic map from the manifold into its tangent bundle with the Sasaki metric. We show that the characteristic polynomial of operator $A={\nabla}{\xi}\;in\;S^{2n+1}\;is\;(x^2+1)^n$.

  • PDF

EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS

  • KIM DONG-SOO;KIM YOUNG HO;PARK SEONG-HEE
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.133-145
    • /
    • 2006
  • We study Riemannian or pseudo-Riemannian manifolds which admit a closed conformal vector field. Subject to the condition that at each point $p{\in}M^n$ the set of conformal gradient vector fields spans a non-degenerate subspace of TpM, using a warped product structure theorem we give a complete description of the space of conformal vector fields on arbitrary non-Ricci flat Einstein spaces.

REAL HYPERSURFACES IN THE COMPLEX HYPERBOLIC QUADRIC WITH CYCLIC PARALLEL STRUCTURE JACOBI OPERATOR

  • Jin Hong Kim;Hyunjin Lee;Young Jin Suh
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.309-339
    • /
    • 2024
  • Let M be a real hypersurface in the complex hyperbolic quadric Qm*, m ≥ 3. The Riemannian curvature tensor field R of M allows us to define a symmetric Jacobi operator with respect to the Reeb vector field ξ, which is called the structure Jacobi operator Rξ = R( · , ξ)ξ ∈ End(TM). On the other hand, in [20], Semmelmann showed that the cyclic parallelism is equivalent to the Killing property regarding any symmetric tensor. Motivated by his result above, in this paper we consider the cyclic parallelism of the structure Jacobi operator Rξ for a real hypersurface M in the complex hyperbolic quadric Qm*. Furthermore, we give a complete classification of Hopf real hypersurfaces in Qm* with such a property.

THE STRUCTURE CONFORMAL VECTOR FIELDS ON A SASAKIAN MANIFOLD

  • Hyun, Jong-Ik
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.2
    • /
    • pp.393-400
    • /
    • 1994
  • Let M(f,η,ξ,g) be a (2m + 1)-dimensional Sasakian manifold with soldering form dp ∈ ΓHom(Λ/sup q/TM, TM) (dp: canonical vector-valued 1-form) where f,η,ξ and g are the (1,1)-tensor field, the structure 1-form, the structure vector field and the metric tensor of M, respectively.(omitted)

  • PDF

RIEMANNIAN SUBMANIFOLDS WITH CONCIRCULAR CANONICAL FIELD

  • Chen, Bang-Yen;Wei, Shihshu Walter
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1525-1537
    • /
    • 2019
  • Let ${\tilde{M}}$ be a Riemannian manifold equipped with a concircular vector field ${\tilde{X}}$ and M a submanifold (with its induced metric) of ${\tilde{M}}$. Denote by X the restriction of ${\tilde{X}}$ on M and by $X^T$ the tangential component of X, called the canonical field of M. In this article we study submanifolds of ${\tilde{M}}$ whose canonical field $X^T$ is also concircular. Several characterizations and classification results in this respect are obtained.

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

Analysis of 3-Dimensional Magnetic Field Distribution in CPM Considering Magnetization Vector Distribution and Design of CPM (자화 벡터 분포를 고려한 CPM의 3차원 자계 분포 해석 및 설계)

  • Lee, Cheol-Gyu;Gwon, Byeong-Il;Park, Seung-Chan;U, Gyeong-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.10
    • /
    • pp.545-553
    • /
    • 2002
  • This paper is about the analysis of 3-dimensional magnetic field distribution in CPM(Convergence Purity Magnet) considering magnetization vector and the optimum design of CPM. The magnetization vector of CPM is obtained using 2-dimensional magnetization FEA(Finite Element Analysis) coupled with Priesach model. Using this magnetization vector of CPM, we analysed the 2-dimensional and 3-dimensional magnetostatic field of CPM and know that these analysis results are not equal. From experimental result, we know that the 3-dimensional analysis is accurate because the magnetic field distribution in CPM cannot be considered correctly by 2-dimensional analysis because of the shape of CPM. Finally, the optimum designing of CPM which control accurately the electron beam deflection in CRT(Cathode Ray Tube) was possible using 3-dimensional magnetic field analysis result.