THE STRUCTURE CONFORMAL VECTOR FIELDS ON A SASAKIAN MANIFOLD

Jong-Ik Hyun

I. Introduction

Let $M(f, \eta, \xi, g)$ be a (2m+1)-dimensional Sasakian manifold with soldering form $dp \in \Gamma \text{Hom}(\Lambda^q TM, TM)$ (dp: canonical vector-valued 1-form) where f, η, ξ and g are the (1,1)-tensor field, the structure 1-form, the structure vector field and the metric tensor of M, respectively. Since one may write $\nabla \xi = f dp$, we give the following definition: Any vector field U such that

(1.1)
$$\nabla U = \rho dp + \lambda \nabla \xi; \ \rho, \lambda \in c^{\infty} M,$$

is defined as a conformal vector field ((1.1) implies $\mathcal{L}_{Ug} = 2\rho g$)

In III, it is proved that the existence of U on $M(f, \eta, \xi, g)$ is determined by an exterior differential system in involution (in the sense of \dot{E} . Cartan [3]), and that any M which carries a vector field U, is foliated by autoparallel three-dimensional submanifold of scalar curvature +1, tangent to U, fU and ξ . Besides such a Sasakian manifold possesses the remarkable property to be isometric to a unit sphere in a (2m+2)-dimensional Euclidean space [6].

Furthermore, any U is an exterior concurrent vector field (see [8]) and of conformal weight $\frac{2m+1}{m}$ [5].

Consider a K-contact manifold $M(f, \eta, \xi, g)$, i.e., a contact metric manifold whose structure vector ξ is a Killing vector field [11].

We give the following definition: Any vector field X such that

$$\mathcal{L}_X \Omega = h\Omega + \gamma \wedge \eta$$

where $\Omega = \frac{1}{2}d\eta$, $h \in C^{\infty}M$, $\gamma \in \Lambda^{1}M$, is called an infinitesimal quasi-conformal contact transformation of Ω .

Received November 4, 1993. Revised March 19, 1994.

II. Preliminaries

Let (M, g) be an orientable C^{∞} -Riemannian manifold and let ∇ be the covariant differential operator defined by the metric tensor g.

Let $\Gamma(TM): \mathcal{X}M$ be the set of sections of the tangent bundle TM and $\alpha: TM \to T^*M$ be the musical isomorphism [7] defined by g.

If, following [7], we denote by

$$A^q(M,TM) = \Gamma \operatorname{Hom}(\Lambda^q TM,TM)$$

the set of vector-valued q-forms, $q < \dim M$, then

$$d^{\nabla}: A^q(M, TM) \to A^{q+1}(M, TM)$$

means the exterior covariant derivative operator with respect to ∇ . It should be noticed that generally $d^{\nabla^2} = d^{\nabla} \circ d^{\nabla} \neq 0$, unlike d^2 .

If $dp \in A^1(M, TM)$ denotes the soldering form of M, any vector field X such that

(2.1)
$$d^{\nabla}(\nabla X) = \nabla^2 X = \pi \wedge dp \in A^2(M, TM),$$

is defined as exterior concurrent (abbreviation :E.C.)(see [8]). It has been proved [8] that π is necessarily given by

$$(2.2) \pi = v\alpha(X); v \neq 0,$$

where $v \in C^{\infty}M$ is the conformal scalar associated with X. If \mathcal{R} denotes the Ricci tensor of ∇ , it follows from (2.1) and (2.2) that

$$\mathcal{R}(X,Z) = -(n-1)vg(X,Z) \Rightarrow v = -\frac{1}{n-1}\mathrm{Ric}X,$$

where $Z \in \mathcal{X}M$ and dim M = n.

Let $T \in \mathcal{X}M$ be any conformal vector field on M (or conformal Killing vector field), that is

(2.3)
$$\mathcal{L}_{\mathcal{T}}g = 2\rho g \Leftrightarrow \langle \nabla_{Z}\mathcal{T}, Z' \rangle + \langle \nabla_{Z'}\mathcal{T}, Z \rangle = 2\rho \langle Z, Z' \rangle$$

where $\rho \in C^{\infty}M; Z, Z' \in \mathcal{X}M$ and

(2.4)
$$\rho = \frac{\operatorname{div} \mathcal{T}}{n}$$

vector field other than zero vector field does not exist.

Any vector field X such that

(2.5)
$$\mathcal{L}_X \alpha(X) = c(\operatorname{div} X)\alpha(X); \qquad c = \text{const}$$

is defined as a self conformal vector field [9].

We also recall the following theorem due to M. Obata [6] (see also [2]): In order that a gradient vector field grad ϕ be an infinitesimal concircular transformation on an n-dimensional manifold M, it is necessary and sufficient that

(2.6)
$$\langle \nabla_Z \operatorname{grad} \phi, Z' \rangle = v \langle Z, Z' \rangle, \quad Z, Z' \in M,$$

where v is a non-vanishing scalar. If $v = -c^2 \phi$, then M is isometric to a sphere S^n of radius $\frac{1}{c}$ in an (n+1)-dimensional Euclidean space.

In general (even if X is not a conformal vector field) $cn(n = \dim M)$ is called the conformal weight of $\alpha(X)$ (cf. [5]).

III. A Structure Conformal Vector Field on a Sasakian Manifold

Let $M(f, \eta, \xi, g)$ be a (2m + 1)-dimensional contact metric manifold. In such a manifold the structure tensors f, η and ξ satisfy the equations;

$$f\xi = 0, \qquad \eta(\xi) = 1,$$

$$f^{2} = -I + \eta \otimes \xi, \qquad \eta(Z) = g(\xi, Z),$$

$$g(fZ, fZ') = g(Z, Z') - \eta(Z)\eta(Z'),$$

$$g(fZ, Z') = \frac{1}{2}d\eta(Z, Z'), \qquad Z, Z' \in \mathcal{X}M(\text{cf. [11]}).$$

The f-Lie derivative is defined by

(3.2)
$$(\nabla f)Z = \nabla fZ - f\nabla Z,$$

and it has been shown in [1] that ξ is a Killing vector fields if and only if $\mathcal{L}_{\xi}f$ vanishes. In this case M is called a K-contact manifold. A K-contact manifold for which one has

$$(3.3) \qquad (\nabla_Z f) Z' = -g(Z, Z') \xi + \eta(Z') Z,$$

is called a Sasakian manifold.

If M is a Sasakian manifold, then ξ is always E.C. and

(3.4)
$$\nabla^2 \xi = -\eta \wedge dp \Rightarrow \mathcal{R}(\xi, Z) = 2mg(\xi, Z)$$

(cf. [7]). Moreover, any E.C. vector field X satisfies

(3.5)
$$\nabla^2 X = -\alpha(X) \wedge dp,$$

and the property of the exterior concurrency is invariant under the action of $f(i.e., \nabla^2 fX = -\alpha(fX) \wedge dp)$.

In the more general case when M is a K-contact manifold, we introduce the following two definitions

[i] A vector field U on M such that

(3.6)
$$\nabla U = \rho \, dp + \lambda \nabla \xi; \qquad \rho, \lambda \in c^{\infty} M,$$

is defined as a structure conformal vector field. Effectively, since ξ is a Killing vector field, it is easy to see that the equation (3.6) satisfies the conformal equation, that is (see (2.3)):

$$\mathcal{L}_{U}g = 2\rho g \Leftrightarrow \langle \nabla_{Z}U, Z' \rangle + \langle \nabla'_{Z}U, Z \rangle = 2\rho \langle Z, Z' \rangle,$$

where $Z, Z' \in \mathcal{X}M$, and this implies (see (2.4))

$$\operatorname{div} U = (2m+1)\rho$$

[ii] Any vector field X such that

(3.7)
$$\mathcal{L}_X \Omega = f\Omega + \gamma \wedge \eta; \qquad \gamma \in \Lambda^1 M, \, \phi \in c^{\infty} M,$$

is called an infinitesimal quasi-conformal contact transformation of Ω (abbreviation :i.q.c.c.t)

Denote by $\mu: TM \to T^*M$, $X \to i_X\Omega$ the bundle isomorphism defined by Ω . If u is any 1-form on M such that du is equated by the second member of (3.7), then clearly $\mu^{-1}(u)$ defines an i.q.c.c.t.

From now on we shall be concerned with Sasakian manifold carrying a structure conformal vector field U.

Now let

$$\mathcal{O} = \text{vect.}\{e_i, fe_i = e_i^*, e_0 = \xi \mid i = 1, \dots, m; i^* = i + m\}$$

be an adapted local field of orthonormal frames on M and let

$$\mathcal{O}^* = \text{covect.}\{w^i, w^{i^*}, w^0 = \eta\}$$

be its associated coframe field.

Then the soldering form dp and $\acute{\rm E}$. Cartan's structure equations are :

(3.8)
$$dp = w^A \otimes e_A; A \in \{i, i^*, 0\}, \nabla e = \theta \otimes e$$

In the above equation θ is the local connection form in the bundle $\mathcal{O}(M)$.

Further since M is Sasakian, by (3.1), (3.3) and (3.8), we have

(3.9)
$$\theta_j^i = \theta_{j^*}^{i^*}, \qquad \theta_j^{i^*} = \theta_i^{j^*}$$

Now in order to make simplifications, we set

(3.10)
$$||U||^2 = 2l, \ \alpha(U) = t, \ \alpha(fU) = s = i_U \Omega$$

and notice that one has

$$s = -\langle U, \nabla \xi \rangle$$

Next, with the help of (3.1) and (3.8), we obtain from (3.6) that

$$(3.11) dl = \rho t - \lambda s,$$

$$(3.12) d\eta(U) = \rho \eta - s$$

and

$$(3.13) dt = 2\lambda\Omega \Rightarrow \lambda = \text{const.}$$

By (3.12), one gets at once

$$(3.14) ds = d\rho \wedge \eta + 2\rho\Omega,$$

and by (3.10) the equation (3.14) implies

(3.15)
$$\mathcal{L}_U \Omega = 2\rho \Omega + d\rho \wedge \eta$$

On the other hand, taking account of (3.4), one derives from (3.6) by covariant differentiation

(3.16)
$$\nabla^2 U = -(\lambda \eta - d\rho) \wedge p$$

The equation (3.16) proves that any structure conformal vector field on a Sasakian manifold is E.C.

Using (3.5), we find

$$(3.17) t = \alpha(U) = \lambda \eta - d\rho,$$

and we notice that the equation (3.17) is consistent with (3.13).

Denote now by \sum the exterior differential system which defines the structure conformal vector field U. Then, by (3.11), (3.12), (3.13), (3.14) and (3.17), we see that the characteristic number of \sum (see [3]) are r = 5, $s_o = 3$, $s_1 = 2$. Consequently, following \acute{E} . Cartan's test [3], we conclude that \sum is in involution and depends on two arbitrary functions of one argument. Further, by (3.3) and (3.6), one derives

(3.18)
$$\nabla f U = (\eta(U) - \lambda) dp + \rho \nabla \xi + d\rho \otimes \xi$$

Next, taking account of (3.17) and div $Z = \operatorname{tr} \nabla Z$, one finds

(3.19)
$$\operatorname{div} f U = 2m(\eta(U) - \lambda)$$

We will outline the following property connected with this subject. First, by (3.17), the equation (3.14) becomes

$$ds = \eta \wedge t + 2\rho\Omega,$$

and by (3.1), one has

$$i_{fU}\Omega = \alpha(f^2U) = (\frac{2m+1}{m})\eta(U)\eta - t$$

Then, taking account of (3.19), one may write

(3.20)
$$\mathcal{L}_{fU}s = \frac{1}{m}s(\operatorname{div}fU) = \frac{2m+1}{m}\frac{(\operatorname{div}fU)s}{\operatorname{dim}M}$$

Hence, by definition (2.5), the equation (3.20) proves the following salient property: The structure conformal vector field U on a (2m+1)-dimensional Sasakian manifold M, turns out, under the action of f, to a self-conformal vector field of conformal weight $\frac{2m+1}{m}$

Denote now by $\mathcal{D}_U = \{U, fU, \xi\}$ the \mathcal{D} -distribution defined by U, fU and ξ . Then, if $X_U, X'_U \in \mathcal{D}_U$ are any vector fields of \mathcal{D}_U , it is easy to see by (3.1), (3.6) and (3.18), that one has $\nabla_{X'_U} X_U \in \mathcal{D}_U$ which expresses the fact that \mathcal{D}_U is an autoparallel foliation (cf. [4]). On the other hand, since ξ , U and fU, ξ and E.C. vector fields, it follows, by linearity that any vector field X_U of \mathcal{D}_U is E.C. As a consequence of this fact and the results of [8], we conclude that the leaf M_U of \mathcal{D}_U is an autoparallel submanifold of scalar curvature +1 of the Sasakian manifold M under consideration.

Next, from (3.17) it follows

$$\operatorname{grad} \rho = \lambda \xi - U$$

and taking account of (3.6) one gets at once

$$(3.21) \nabla \operatorname{grad} \rho = -\rho \, dp$$

which shows that grad ρ is a concurrent vector field [10]. From (3.21) one gets instantly

$$\langle \nabla_Z \operatorname{grad} \rho, Z' \rangle = -\rho \langle Z, Z' \rangle,$$

Applying Obata's theorem (see (2.6)), we obtain that the Sasakian manifold under consideration enjoys the remarkable property to be isometric to a unit sphere in a (2m + 2)-dimensional Euclidean space.

Thus, we proved the following theorem:

THEOREM 3.1. Any Sasakian manifold $M(f, \eta, \xi, g)$ which carries a structure conformal vector field U is foliated by autoparallel 3-dimensional submanifolds of scalar curvature +1 tangent to U, fU and ξ and is isometric to a unit sphere in a (2m+2)-dimensional Euclidean space. Furthermore, one has the following properties:

- (a) The existence of U is determined by an exterior differential system in involution.
- (b) Any U is an E.C. vector field and defines an infinitesimal quasiconformal contact transformation of Ω
- (c) The vector field fU is self-conformal of conformal weight $\frac{2m+1}{m}$

References

- D. E. Blair, Almost contact manifolds with Killing structure tensors, Pacific J. Math. 39 (1971), 285-292.
- 2. T. Branson, Conformally covariant equations on differential forms, Comm. Partial Differential Equations 7 (1982), 393-431.
- 3. É. Cartan, Les Systèmes Differentials Extérieurs et Leurs Applicationés Géometriques, Hermann. Paris, 1945.
- 4. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, vol. 1, Wiley-Interscience, New York-London, 1963.
- 5. Y. Kosmann, Dérivées de Lie des spineurs, C.R.Acad. Sci. Paris A-B 262 (1966), A289-A292.
- 6. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 11 (1962), 333-340.
- W. A. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.
- 8. R. Rosca, Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian structure, Libertas Math. 6 (1986), 167-174.
- 9. K. Yano, Integral formulas in Riemannian Geometry, Marcel Dekker, Inc., New York, 1970.
- K. Yano. and B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. J. 23 (1971), 343-350.
- 11. K. Yano and M. Kon, CR-submanifolds of Kählerian and Sasakian manifolds, Progress in Math. 30, Birkhäuser Verlag, Boston-Basel-Stuttgant, 1983.

Department of Mathematics Education Cheju National University of Education Cheju 690-060, Korea