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THE STRUCTURE CONFORMAL VECTOR
FIELDS ON A SASAKIAN MANIFOLD

JONG-IK HyuN

I. Introduction

Let M(f,n,€,9) be a (2m + 1)-dimensional Sasakian manifold with
soldering form dp € T'Hom(AYTM,TM) (dp: canonical vector-valued 1-
form) where f,n,£ and g are the (1,1)-tensor field, the structure 1-form,
the structure vector field and the metric tensor of M, respectively. Since
one may write V& = fdp, we give the following definition : Any vector
field U such that

(1.1) VU = pdp+ AVE; p, A € M,

is defined as a conformal vector field ((1.1) implies Lyg = 2pg)

In III, it is proved that the existence of U on M(f,n,&,g) is deter-
mined by an exterior differential system in involution (in the sense of E.
Cartan [3]), and that any M which carries a vector field U, is foliated
by autoparallel three-dimensional submanifold of scalar curvature +1,
tangent to U, fU and {. Besides such a Sasakian manifold possesses
the remarkable property to be isometric to a unit sphere in a (2m + 2)-
dimensional Euclidean space [6].

Furthermore, any U is an exterior concurrent vector field (see [8]) and
of conformal weight 271 [5].

Consider a IK-contact manifold M(f,n,€,g), i.e.,, a contact metric
manifold whose structure vector £ is a Killing vector field [11].

We give the following definition : Any vector field X such that

(1.2) LxQ=hQ+~vAn
where Q = %dn, h € C®M,v € A'M, is called an infinitesimal quasi-

conformal contact transformation of €.
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II. Preliminaries

Let (M, g) be an orientable C*°-Riemannian manifold and let V be
the covariant differential operator defined by the metric tensor g.

Let I(TM) : XM be the set of sections of the tangent bundle TM
and o : TM — T*M be the musical isomorphism [7] defined by g.

If, following [7], we denote by

AYM,TM) =THom(AITM,TM)
the set of vector-valued g-forms, ¢ < dim M, then
dV . AY(M,TM) = A" (M, TM)
means the exterior covariant derivative operator with respect to V. It
should be noticed that generally d¥° = d¥ o d" # 0, unlike d2.
If dp € AY(M,TM) denotes the soldering form of M, any vector field
X such that
(2.1) d¥(VX)=V2X =n Adp € A2(M, TM),

is defined as exterior concurrent (abbreviation :E.C.)(see (8]).
It has been proved [8] that 7 is necessarily given by

(2.2) m=va(X);v#0,

where v € C*M is the conformal scalar associated with X.
If R denotes the Ricci tensor of V, it follows from (2.1) and (2.2) that

R(X,Z)=—-(n—-Nvg(X,2)=>v= —ﬁj:—lRicX,

where Z € XM and dim M = n.
Let T € XM be any conformal vector field on M (or conformal Killing
vector field), that is

(2.3) L1g=2pg & (VT2 + (VT,2) =2p(Z,2')
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where p € C*M;Z,2' € XM and
_div?

n

(2.4) p

vector field other than zero vector field does not exist.
Any vector field X such that

(2.5) Lxa(X) = c(div X)a(X); ¢ = const

is defined as a self conformal vector field [9].
We also recall the following theorem due to M. Obata [6] (see also [2]):
In order that a gradient vector field grad ¢ be an infinitesimal concircular

transformation on an n-dimensional manifold M, it is necessary and
sufficient that

(2.6) (Vzgrad ¢,2') =v(Z,2'), Z,Z2' € M,

where v is a non-vanishing scalar. If v = —c?¢, then M is isometric to a
sphere S™ of radius 1 in an (n + 1)-dimensional Euclidean space.

In general (even if X is not a conformal vector field) en(n = dim M)
is called the conformal weight of a(X) (<f. [5]).

ITI. A Structure Conformal Vector Field on a Sasakian Man-
ifold

Let M(f,7n,£,9) be a (2m + 1)-dimensional contact metric manifold.
In such a manifold the structure tensors f,n and ¢ satisfy the equations;

PP=-I+n®¢ n(2)=4(¢2),
B g(f2,52") = 9(2,2") — n(Z(2Z"),

o(f2,2") = %dn(z, 7, Z,2'€ XM(cL [11)).
The f-Lie derivative is defined by

(3.2) (VHZ=VfZ— fVZ,
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and it has been shown in [1] that ¢ is a Killing vector fields if and only
if L¢f vanishes. In this case M is called a K-contact manifold. A K-

contact manifold for which one has
(3.3) (Vz)Z' = -9(2,2")¢ +n(2") 2,

is called a Sasakian manifold.
If M is a Sasakian manifold, then £ is always E.C. and

(3:4) Vi = —nAdp = R(¢ Z) = 2mg(¢, Z)

(cf.[7]). Moreover, any E.C.vector field X satisfies

(3.5) ViX = —a(X) A dp,

and the property of the exterior concurrency is invariant under the action
of f(i.e.,, V2fX = —a(fX) Adp).

In the more general case when M is a K-contact manifold, we intro-
duce the following two definitions

i} A vector field U on M such that
(3.6) VU = pdp + AV¢; Py A €M,

is defined as a structure conformal vector field. Effectively, since £ is a
Killing vector field, it is easy to see that the equation (3.6) satisfies the
conformal equation, that is (see (2.3)):

Lug =2pg & (VzU,2') +(V3U,2) = 2p(Z,2'),
where Z, Z' € XM, and this implies (see (2.4))
divU =2m+1)p
[ii] Any vector field X such that
(3.7 LxQ=fQ+vAn; v E€AM, ¢ € ™M,

is called an infinitesimal quasi-conformal contact transformation of 2
(abbreviation :i.g.c.c.t)
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Denote by p: TM — T*M, X — ixQ the bundle isomorphism de-
fined by Q. If u is any 1-form on M such that du is equated by the
second member of (3.7), then clearly ;= (u) defines an i.q.c.c.t.

From now on we shall be concerned with Sasakian manifold carrying
a structure conformal vector field U.

Now let

O =vect.{e;, fei=¢€l,eg =Eli=1,...,m;t* =i+ m}
be an adapted local field of orthonormal frames on M and let
o* = covect.{w",w"*, w? = n}

be its associated coframe field.
Then the soldering form dp and E. Cartan’s structure equations are :

(3.8) dp=w?®ey; A€ {3,i*,0},Ve=0Qe
In the above equation 8 is the local connection form in the bundle

O(M).
Further since M is Sasakian, by (3.1), (3.3) and (3.8), we have

(3.9) 8} = 6., g =6
Now in order to make simplifications, we set
(3.10) MU =2, aU)=t, a(fU) =s=1iyQ

and notice that one has

s = _<Ua V£>
Next, with the help of (3.1) and (3.8), we obtain from (3.6) that

(3.11) dl = pt — s,
(3.12) dn(U)=pn—s
and

(3.13) dt = 202 = X = const.
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By (3.12), one gets at once

(3.14) ds = dp An+ 2p12,
and by (3.10) the equation (3.14) implies
(3.15) Ly =2p0+dpAn

On the other hand, taking account of (3.4), one derives from (3.6) by
covariant differentiation

(3.16) VU =~(An—dp)Ap

The equation (3.16) proves that any structure conformal vector field on

a Sasakian manifold is E.C.
Using (3.5), we find

(3.17) t = a(U) = Ay — dp,

and we notice that the equation (3.17) is consistent with (3.13).

Denote now by Y the exterior differential system which defines the
structure conformal vector field U. Then, by (3.11), (3.12), (3.13), (3.14)
and (3.17), we see that the characteristic number of > (see [3]) are
r =195, s, =3, s; = 2. Consequently, following E. Cartan’s test (3], we
conclude that Y is in involution and depends on two arbitrary functions
of one argument. Further, by (3.3) and (3.6), one derives

(3.18) VU=®U)—A)dp+ pVE+dp®¢
Next, taking account of (3.17) and div Z = tr VZ, one finds
(3.19) divfU =2m(n(U) — N)

We will outline the following property connected with this subject. First,
by (3.17), the equation (3.14) becomes.

ds =nAt+2p0,
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and by (3.1), one has

2m +1
m

ifud = o(f*U) = (

JnU)n -t
Then, taking account of (3.19), one may write

2m + 1 (divfU)s
m dim M

Hence, by definition (2.5), the equation (3.20) proves the following salient
property : The structure conformal vector field U on a (2m + 1)-dimen-
sional Sasakian manifold M, turns out, under the action of f, to a self-
conformal vector field of conformal weight 3’"—";‘1

Denote now by Dy = {U, fU, £} the D-distribution defined by U, fU
and €. Then, if Xy, X{; € Dy are any vector fields of Dy, it is easy to see
by (3.1), (3.6) and (3.18), that one has Vx; Xy € Dy which expresses
the fact that Dy is an autoparallel foliation (cf. [4]). On the other hand,
since £,U and fU,£ and E.C. vector fields, it follows, by linearity that
any vector field Xy of Dy is E.C. As a consequence of this fact and
the results of [8], we conclude that the leaf My of Dy is an autoparallel
submanifold of scalar curvature +1 of the Sasakian manifold M under
counsideration.

Next, from (3.17) it follows

(3.20) Lys = %s(dinU) =

gradp=X{-U
and taking account of (3.6) one gets at once
(3.21) Vgradp = —pdp

which shows that grad p is a concurrent vector field [10]. From (3.21)
one gets instantly

(Vzgra'dp7 Z’) = —p(Z,Z’)a

Applying Obata’s theorem (see (2.6)), we obtain that the Sasakian man-
ifold under consideration enjoys the remarkable property to be isometric
to a unit sphere in a (2m + 2)-dimensional Euclidean space.

Thus, we proved the following theorem:
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THEOREM 3.1. Any Sasakian manifold M(f,n,€,g) which carries a

structure conformal vector field U is foliated by autoparallel 3-dimen-
sional submanifolds of scalar curvature +1 tangent to U, fU and { and
is isometric to a unit sphere in a (2m + 2)-dimensional Euclidean space.
Furthermore, one has the following properties:

10.

11.

(a) The existence of U is determined by an exterior differential sys-
tem in involution.

(b) Any U is an E.C. vector field and defines an infinitesimal quasi-
conformal contact transformation of 2

(c) The vector field fU is self-conformal of conformal weight 2—":’—;'1
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