• 제목/요약/키워드: Vector Autoregressive Model

검색결과 137건 처리시간 0.032초

Forecasting volatility via conditional autoregressive value at risk model based on support vector quantile regression

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제22권3호
    • /
    • pp.589-596
    • /
    • 2011
  • The conditional autoregressive value at risk (CAViaR) model is useful for risk management, which does not require the assumption that the conditional distribution does not vary over time but the volatility does. But it does not provide volatility forecasts, which are needed for several important applications such as option pricing and portfolio management. For a variety of probability distributions, it is known that there is a constant relationship between the standard deviation and the distance between symmetric quantiles in the tails of the distribution. This inspires us to use a support vector quantile regression (SVQR) for volatility forecasts with the distance between CAViaR forecasts of symmetric quantiles. Simulated example and real example are provided to indicate the usefulness of proposed forecasting method for volatility.

Analysis of the relationship between garlic and onion acreage response

  • Lee, Eulkyeong;Hong, Seungjee
    • 농업과학연구
    • /
    • 제43권1호
    • /
    • pp.136-143
    • /
    • 2016
  • Garlic and onion are staple agricultural products to Koreans and also are important with regard to agricultural producers' income. These products' acreage responses are highly correlated with each other. Therefore, it is necessary to test whether there is a cointegration relationship between garlic acreage and onion acreage when one tries to estimate the acreage response's function. Based upon the test result of cointegration, it is confirmed that there is no statistically significant cointegration relationship between garlic acreage and onion acreage. In this case, vector autoregressive model is preferred to vector error correction model. This study investigated the dynamic relationship between garlic and onion acreage responses using vector autoregressive (VAR) model. The estimated results of VAR acreage response models show that there is a statistically significant relationship between current and lagged acreage of more than one lag. Therefore, it is recommended that government should consider the long-run period's relationship of each product's acreage when it plans a policy for stabilizing the supply and demand of garlic and onion. For the price variables, garlic price only affects garlic acreage response while onion price affects not only onion acreage response but also garlic acreage response. This implies that the stabilizing policy for onion price could have bigger effects than that for garlic price stabilization.

비선형 평균 일반화 이분산 자기회귀모형의 추정 (Estimation of nonlinear GARCH-M model)

  • 심주용;이장택
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권5호
    • /
    • pp.831-839
    • /
    • 2010
  • 최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

VAR 모형을 이용한 크기별 완도 전복가격의 선도가격 분석 (A Leading-price Analysis of Wando Abalone Producer Prices by Shell Size Using VAR Model)

  • 남종오;심성현
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.327-341
    • /
    • 2014
  • This study aims to analyze causality among Wando abalone producer prices by size using a vector autoregressive model to expiscate the leading-price of Wando abalone in various price classes by size per kg. This study, using an analytical approach, applies a unit-root test for stability of data, a Granger causality test to learn about interaction among price classes by size for Wando abalone, and a vector autoregressive model to estimate the statistical impact among t-1 variables used in the model. As a result of our leading-price analysis of Wando abalone producer prices by shell size using a VAR model, first, DF, PP, and KPSS tests showed that the Wando abalone monthly price change rate by size differentiated by logarithm were stable. Second, the Granger causality relationship analysis showed that the price change rate for big size abalone weakly led the price change rate for the small and medium sizes of abalone. Third, the vector autoregressive model showed that three price change rates of t-1 period variables statistically, significantly impacted price change rates of own size and other sizes in t period. Fourth, the impulse response analysis indicated that the impulse responses of structural shocks for price change rate for big size abalone was relatively more powerful in its own size and in other sizes than shocks emanating from other sizes. Fifth, the variance decomposition analysis indicated that the price change rate for big size abalone was relatively more influential than the price change rates for medium and small size abalone.

한국 소비자원 의료분야 처리금액에 대한 시계열 분석 (Time series analysis for the amount of medicine from the Korea Consumer Agency)

  • 강희송;권숙희;이성덕
    • 응용통계연구
    • /
    • 제36권1호
    • /
    • pp.21-32
    • /
    • 2023
  • 한국 소비자원의 의료 분야 처리금액 자료에 대한 시계열 모형을 이용한 실증 분석을 연구하였다. 의료분야 처리금액 시계열 자료는 상담 처리금액, 피해 구제금액, 분쟁 조정 처리금액으로 나뉜 3개 변수를 사용하였고 분석에 사용된 시계열 모형은 ARIMA 모형, 벡터 자기회귀 모형 그리고 전이 함수를 이용한 시계열 모형이다. 이들 중 전이 함수를 이용한 시계열 모형이 단기 예측면에서 가장 우수한 예측력을 보였고 벡터자기회귀 모형도 변수간 영향력과 기간을 파악하는데 유용한 정보를 제공하였다.

다변량 비정상 계절형 시계열모형의 예측력 비교 (Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models)

  • 성병찬
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2011
  • 본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.

필터링된 잔차를 이용한 희박벡터자기회귀모형에서의 변수 선택 측도 (Filtered Coupling Measures for Variable Selection in Sparse Vector Autoregressive Modeling)

  • 이승규;백창룡
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.871-883
    • /
    • 2015
  • 벡터자기회귀모형은 다차원의 시계열 자료간의 선형종속 관계를 연구하는데 효율적인 모형이다. 하지만 차원이 높아질 경우 추정해야할 모수가 급격히 증가하여 추정이 불안정해지고 예측력의 저하 및 해석의 어려움을 동반하는 문제를 가지고 있다. 이를 보완하기 위해서 많은 계수를 0으로 두는 희박벡터자기회귀모형이 제안되었고 고차원 시계열 분석에서 유용함이 밝혀졌다. 이 논문에서는 희박벡터자기회귀모형 추정에 있어서 어떠한 계수를 0으로 두어야 하는지를 판단해주는 한 쌍의 변수에 대한 상관 정도를 추정해주는 커플링 측도를 제안한다. 먼저 이 논문에서는 부분 스펙트럼 일관성에 기반을 둔 커플링 측도를 사용한 변수 선택의 경우 다른 변수의 효과를 제거한 잔차에 기반을 두었기에 좋은 효율성을 보임을 밝힌다. 하지만 부분 스펙트럼 일관성의 경우 벡터자기회귀모형 계수의 비대칭성을 고려하지 못한다는 단점이 있어 이를 보완하고자 필터링을 통해 다른 변수의 효과를 제거한 잔차에 기반을 둔 동시에 비대칭성을 가지는 커플링 측도들, 필터링된 잔차를 이용한 교차 상관성과 그래인저 인과관계를 제안한다. 모의실험을 통해 우리가 제안한 방법론들이 두터운 꼬리를 가지거나 높은 차수의 희박벡터자기회귀모형의 경우에도 매우 정확하게 0이 아닌 변수를 선택함을 보인다.

Estimation of structural vector autoregressive models

  • Lutkepohl, Helmut
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.421-441
    • /
    • 2017
  • In this survey, estimation methods for structural vector autoregressive models are presented in a systematic way. Both frequentist and Bayesian methods are considered. Depending on the model setup and type of restrictions, least squares estimation, instrumental variables estimation, method-of-moments estimation and generalized method-of-moments are considered. The methods are presented in a unified framework that enables a practitioner to find the most suitable estimation method for a given model setup and set of restrictions. It is emphasized that specifying the identifying restrictions such that they are linear restrictions on the structural parameters is helpful. Examples are provided to illustrate alternative model setups, types of restrictions and the most suitable corresponding estimation methods.

VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로 (A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA)

  • 조중형
    • 통상정보연구
    • /
    • 제16권3호
    • /
    • pp.73-96
    • /
    • 2014
  • 본 연구는 우리나라 수출 상위 5개 품목 중 하나인 자동차 수출을 대상으로, 승용차 브랜드별 단기 수출수요에 영향을 미치는 이론적 잠재요인을 발굴 및 설계하여 이론적 수출수요예측모델을 개발하고, 다변량시계열분석 기반의 VAR(Vector Auto Regressive)모형을 이용한 실증분석을 통해 개별상품과 시장특성이 반영된 단기수출수요예측모델을 검정하고자 하였다. 따라서 미국에 수출되고 있는 우리나라 소형 승용차 2개 브랜드(엑센트, 아반떼)에 대해 VAR모형을 이용한 분기단위 단기수요예측모델을 개발하고, 브랜드별 예측모델을 통해 산출된 t+1분기 시점의 예측값과 실제 판매된 판매대수를 대상기간을 1분기씩 달리하여 비교평가 하였다. 그 결과 엑센트와 아반떼의 RMSE %는 각각 4.3%와 20.0%로 났으며, 일평균 판매량을 기준으로 보았을 때 엑센트는 3.9일에 해당하고 아반떼는 18.4일에 해당하는 물량임을 알 수 있었다. 따라서 본 연구의 단기수출수요예측모델은 예측력과 검정시점별 일관성 측면에서 활용성이 높은 것으로 평가할 수 있었다.

  • PDF

EFFICIENT ESTIMATION OF THE COINTEGRATING VECTOR IN ERROR CORRECTION MODELS WITH STATIONARY COVARIATES

  • Seo, Byeong-Seon
    • Journal of the Korean Statistical Society
    • /
    • 제34권4호
    • /
    • pp.345-366
    • /
    • 2005
  • This paper considers the cointegrating vector estimator in the error correction model with stationary covariates, which combines the stationary vector autoregressive model and the nonstationary error correction model. The cointegrating vector estimator is shown to follow the locally asymptotically mixed normal distribution. The variance of the estimator depends on the co­variate effect of stationary regressors, and the asymptotic efficiency improves as the magnitude of the covariate effect increases. An economic application of the money demand equation is provided.