• Title/Summary/Keyword: Vascular tone

Search Result 75, Processing Time 0.016 seconds

In Vitro Effects of Nitroglycerin, Nicardipine, Verapamil, and Papaverine on Rabbit Brachial and Celiac Arterial Tone (혈관이완제의 전처치가 토끼의 상완동맥과 복강동맥의 혈관수축에 미치는 효과; Nitroglycerin, Nicardipine, Verapamil과 Papaverine의 비교)

  • Shinn, Sung-Ho;Kim, Young-Hak;Seo, Jung-Kuk;Kim, Jin-Hyuk;Chung, Won-Sang;Jeon, Yang-Bin;Chang, Byung-Chul;Jang, Hyo-Jun
    • Journal of Chest Surgery
    • /
    • v.41 no.5
    • /
    • pp.541-549
    • /
    • 2008
  • Background: Vasoconstrictor-induced reduction in arterial graft diameter can cause significant flow deprivation. The aim of this study was to evaluate the effect of vasodilator pretreatment on vasoconstrictor-induced blood vessel spasm in vitro. Material and Method: Rabbit brachial arteries (BA) and celiac arteries (CA) were cut into rings $(3{\sim}4mm)$ and suspended with a force displacement transducer (TSD $125C^{(R)}$, Biopac Inc. USA) in a tissue bath filled with 5 mL modified Krebs solution bubbled with 5% $CO_2$ and 95% $O_2\;at\;38^{\circ}C$. The rings were contracted with vasoconstrictors, and the developed tension changes were considered control values. The rings were then pre- treated with $30{\mu}M$ nitroglycerin, nicardipine, verapamil, and papaverine, respectively, for 40 minutes and rinsed with the physiologic buffered salt solution three times every 15 min. The vasoconstrictor-induced tension changes after the previous procedure were considered experimental values. Data are expressed as the percentage tension induced by vasoconstrictors before and after pretreatment with vasodilators. Result: Nicardipine depressed vasoconstriction induced by norepinephrine, angiotensin II (All), and U46619 in both the BA and the CA more significantly than did nitroglycerin (p<0.01) and verapamil (p<0.05). Verapamil depressed vasoconstriction induced by 5-hydroxytryptamine (5HT), All, and U46619 in the BA and by 5HT in the CA more significantly than did nitroglycerin (p<0.01). Conclusion: These findings suggest that both nicardipine and verapamil effectively depressed vasoconstrictor action. Nicardipine is thought to be more effective than verapamil for the prevention of vasoconstrictor action.

A Study of Endothelium-dependent Pulmonary Arterial Relaxation and the Role of Nitric oxide on Acute Hypoxic Pulmonary Vasoconstriction in Rats (흰쥐 폐동맥의 내피세포의존성 혈관이완과 급성 저산소성 폐동맥수축에서 산화질소의 역할)

  • In, Kwang-Ho;Lee, Jin-Goo;Cho, Jae-Youn;Shim, Jae-Jung;Kang, Kyung-Ho;Yoo, Se-Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.231-238
    • /
    • 1994
  • Backgroud: Since the demonstration of the fact that vascular relaxation by acetylcholine(Ach) results from the release of relaxing factor from the endothelium, the identity and physiology of this endothelium-derived relaxing factor(EDRF) has been the target for many researches. EDRF has been identified as nitric oxide(NO). With the recent evidences that EDRF is an important mediator of vascular tone, there have been increasing interests in defining the role of the EDRF as a potential mediator of hypoxic pulmonary vasoconstriction. But the role of EDRF in modulating the pulmonary circulation is not compeletely clarified. To investigate the endothelium-dependent pulmonary vasodilation and the role of EDRF during hypoxic pulmonary vasoconstriction, we studied the effects of $N^G$-monomethyl-L-arginine(L-NMMA) and L-arginine on the precontracted pulmonary arterial rings of the rat in normoxia and hypoxia. Mothods: The pulmonary arteries of male Sprague Dawley(300~350g) were dissected free of surrounding tissue, and cut into rings. Rings were mounted over fine rigid wires, in organ chambers filled with 20ml of Krebs solution bubbled with 95 percent oxygen and 5 percent carbon dioxide and maintained at $37^{\circ}C$. Changes in isometric tension were recorded with a force transducer(FT.03 Grass, Quincy, USA) Results: 1) Precontraction of rat pulmonry artery with intact endothelium by phenylephrine(PE, $10^{-6}M$) was relaxed completely by acetylcholine(Ach, $10^{-9}-10^{-5}M$) and sodium nitroprusside(SN, $10^{-9}-10^{-5}M$), but relaxing response by Ach in rat pulmonary artery with denuded endothelium was significantly decreased. 2) L-NMMA($10^{-4}M$) pretreatment inhibited Ach($10^{-9}-10^{-5}M$)-induced relaxation, but L-NMMA ($10^{-4}M$) had no effect on relaxation induced by SN($10^{-9}-10^{-5}M$). 3) Pretreatment of the L-arginine($10^{-4}M$) significantly reversed the inhibition of the Ach ($10^{-9}-10^{-5}M$)-induced relaxation caused by L-NMMA($10^{-4}M$) 4) Pulmonary arterial contraction by PE($10^{-6}M$) was stronger in hypoxia than normoxia but relaxing response by Ach($10^{-9}-10^{-5}M$) was decreased, 5) With pretreatment of L-arginine($10^{-4}M$), pulmonary arterial relaxation by Ach($10^{-9}-10^{-5}M$) in hypoxia was reversed to the level of relaxation in normoxia. Conclusion: It is concluded that rat pulmonary arterial relaxation by Ach is dependent on the intact endothelium and is largely mediated by NO. Acute hypoxic pulmonary vasoconstriction is related to the suppression on NO formation in the vascular endothelium.

  • PDF

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.

Arginine Vasopressin Therapy of Vasodilatory Shock after Cardiac Surgery (심장 수술 후 혈관 확장성 쇼크가 발생한 환자에서 바소프레신 투여 요법)

  • Ahn, Young-Chan;Park, Chul-Hyun;Kim, Gun-Woo;Lee, Jae-Ik;Jun, Yang-Bin;Choi, Chang-Hyu;Hyun, Sung-Youl;Park, Kook-Yang
    • Journal of Chest Surgery
    • /
    • v.39 no.12 s.269
    • /
    • pp.913-919
    • /
    • 2006
  • Background: Vasodilatory shock has been implicated in life-threatening complications after open heart surgery, where the systemic inflammatory reaction is attributed to the cardiopulmonary bypass(CPB). The secretion of arginine vasopressin(AVP) has been found to be defective in a variety of vasodilatory shock states and administration of AVP markedly improves vasomotor tone and blood pressure. So we reviewed our experience of AVP therapy in patients with vasodilatory shock following heart surgery using CPB. Material and Method: From January 2004 to July 2006, we reviewed the records of patients who received AVP therapy for vasodilatory shock following heart surgery using CPB. Vasodilatory shock was defined as a mean arterial pressure lower(MAP) than 70 mmHg, a cardiac index greater than 2.5 $L/min/m^2$, peripheral vascular resistance lower than 800 $dyn/s/cm^5$, and vasopressor requirements. The hemodynamic responses of patients who received AVP therapy for vasodilatory shock after cardiac surgery were analyzed retrospectively. Result: One hundred ninety nine open cardiac surgery patients were consecutively included in this study. Twenty two patients(11.1%) met criteria for vasodilatory shock. Despite the administration of high dose catecholamine vasopressor, all patients were hypotensive with a mean arterial pressure less than 70 mmHg. AVP therapy increased MAP from $53.3{\pm}7.4\;to\;82.0{\pm}12.0$ mmHg at 1 hour (p<0.001) and decreased other vasopressor requirements from $25{\pm}7\;to\;18{\pm}6$ at 1 hour(p<0.001) and individually maintained it for 12 hours. Conclusion: Our date suggest that AVP may be a safe and an effective vasopressor in patients with vasodilatory shock. In patients exhibiting vasodilatory shock after heart surgery, replacement of AVP increases blood pressure and reduces catecholamine vasopressor requirements.

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF