• Title/Summary/Keyword: Vascular smooth muscle cell(VSMC)

Search Result 59, Processing Time 0.037 seconds

Regulation of vascular smooth muscle phenotype by cross-regulation of krüppel-like factors

  • Ha, Jung Min;Yun, Sung Ji;Jin, Seo Yeon;Lee, Hye Sun;Kim, Sun Ja;Shin, Hwa Kyoung;Bae, Sun Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Regulation of vascular smooth muscle cell (VSMC) phenotype plays an essential role in many cardiovascular diseases. In the present study, we provide evidence that $kr{\ddot{u}}ppel$-like factor 8 (KLF8) is essential for tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)-induced phenotypic conversion of VSMC obtained from thoracic aorta from 4-week-old SD rats. Stimulation of the contractile phenotype of VSMCs with $TNF{\alpha}$ significantly reduced the VSMC marker gene expression and KLF8. The gene expression of KLF8 was blocked by $TNF{\alpha}$ stimulation in an ERK-dependent manner. The promoter region of KLF8 contained putative Sp1, KLF4, and $NF{\kappa}B$ binding sites. Myocardin significantly enhanced the promoter activity of KLF4 and KLF8. The ectopic expression of KLF4 strongly enhanced the promoter activity of KLF8. Moreover, silencing of Akt1 significantly attenuated the promoter activity of KLF8; conversely, the overexpression of Akt1 significantly enhanced the promoter activity of KLF8. The promoter activity of SMA, $SM22{\alpha}$, and KLF8 was significantly elevated in the contractile phenotype of VSMCs. The ectopic expression of KLF8 markedly enhanced the expression of SMA and $SM22{\alpha}$ concomitant with morphological changes. The overexpression of KLF8 stimulated the promoter activity of SMA. Stimulation of VSMCs with $TNF{\alpha}$ enhanced the expression of KLF5, and the promoter activity of KLF5 was markedly suppressed by KLF8 ectopic expression. Finally, the overexpression of KLF5 suppressed the promoter activity of SMA and $SM22{\alpha}$, thereby reduced the contractility in response to the stimulation of angiotensin II. These results suggest that cross-regulation of KLF family of transcription factors plays an essential role in the VSMC phenotype.

Effects of Antioxidants on the Gamma-Radiation Damage of the Cultured Vascular Smooth Mucle Cells of Rat Aorta

  • Lee, Jong-Doo;Choi, Hyoung-Chul;Kang, Young-Jin;Kim, Myung-Se;Lee, Kwang-Youn
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.189-195
    • /
    • 2007
  • To study the protective effects of antioxidants on the radiation damages of the cells, vascular smooth muscle cells(VSMC) from thoracic aorta of Sprague-Dawley rats were cultured and irradiated with gamma-ray. Cell viability was measured by direct cell counting and MTT assay, and flow cytometry was performed to measure fractional distributions of the cells. Gamma-ray irradiation inhibited cell proliferations accompanied with decreased G1 phase and increased S- and G2/M phases, and the maximum effects were observed at 1500 or 2000 cGy. Submaximal concentrations of antioxidants, such as allopurinol, vitamin C, N-acetylcycteine(NAC), lipoic acid, dihydrolipoic acid and rebamipide tended to increase the cell viability suppressed by low dose of radiation(500 cGy), and enalapril and vitamin E increased it significantly. Allopurinol, vitamin E, NAC, lipoic acid, captopril and enalapril significantly increased G1 phase. Allopurinol and vitamin E tended to increase c-Myc expression, detected by Western blot, that was reduced by the radiation, and enalapril increased it significantly. The cell viability and c-Myc expression were highly correlated(r=0.97) with each other. These results suggest that antioxidants, especially enalapril and vitamin E, recover the viability of VSMC from gamma-radiation injury, through a mechanism which includes increase of c-Myc protein expression.

HMGB1 increases RAGE expression in vascular smooth muscle cells via ERK and p-38 MAPK-dependent pathways

  • Jang, Eun Jeong;Kim, Heejeong;Baek, Seung Eun;Jeon, Eun Yeong;Kim, Ji Won;Kim, Ju Yeon;Kim, Chi Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.5
    • /
    • pp.389-396
    • /
    • 2022
  • The increased expression of receptors for advanced glycation end-product (RAGE) is known as a key player in the progression of vascular remodeling. However, the precise signal pathways regulating RAGE expression in vascular smooth muscle cells (VSMCs) in the injured vasculatures are unclear. Given the importance of mitogen-activated protein kinase (MAPK) signaling in cell proliferation, we investigated the importance of MAPK signaling in high-mobility group box 1 (HMGB1)-induced RAGE expression in VSMCs. In HMGB1 (100 ng/ml)-stimulated human VSMCs, the expression of RAGE mRNA and protein was increased in association with an increase in AGE-induced VSMC proliferation. The HMGB1-induced RAGE expression was attenuated in cells pretreated with inhibitors for ERK (PD98059, 10 μM) and p38 MAPK (SB203580, 10 μM) as well as in cells deficient in ERK and p38 MAPK using siRNAs, but not in cells deficient of JNK signaling. In cells stimulated with HMGB1, the phosphorylation of ERK, JNK, and p38 MAPK was increased. This increase in ERK and p38 MAPK phosphorylation was inhibited by p38 MAPK and ERK inhibitors, respectively, but not by JNK inhibitor. Moreover, AGE-induced VSMC proliferation in HMGB1-stimulated cells was attenuated in cells treated with ERK and p38 MAPK inhibitors. Taken together, our results indicate that ERK and p38 MAPK signaling are involved in RAGE expression in HMGB1-stimulated VSMCs. Thus, the ERK/p38 MAPK-RAGE signaling axis in VSMCs was suggested as a potential therapeutic target for vascular remodeling in the injured vasculatures.

Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC

  • Ha, Yu Mi;Nam, Ju-Ock;Kang, Young Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 2015
  • Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension.

Gamma-aminobutyric acid-salt attenuated high cholesterol/high salt diet induced hypertension in mice

  • Son, Myeongjoo;Oh, Seyeon;Lee, Hye Sun;Choi, Junwon;Lee, Bae-Jin;Park, Joung-Hyun;Park, Chul Hyun;Son, Kuk Hui;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.1
    • /
    • pp.27-38
    • /
    • 2021
  • Excessive salt intake induces hypertension, but several gamma-aminobutyric acid (GABA) supplements have been shown to reduce blood pressure. GABA-salt, a fermented salt by L. brevis BJ20 containing GABA was prepared through the post-fermentation with refined salt and the fermented GABA extract. We evaluated the effect of GABA-salt on hypertension in a high salt, high cholesterol diet induced mouse model. We analyzed type 1 macrophage (M1) polarization, the expression of M1 related cytokines, GABA receptor expression, endothelial cell (EC) dysfunction, vascular smooth muscle cell (VSMC) proliferation, and medial thicknesses in mice model. GABA-salt attenuated diet-induced blood pressure increases, M1 polarization, and TNF-α and inducible nitric oxide synthase (NOS) levels in mouse aortas, and in salt treated macrophages in vitro. Furthermore, GABA-salt induced higher GABAB receptor and endothelial NOS (eNOS) and eNOS phosphorylation levels than those observed in salt treated ECs. In addition, GABA-salt attenuated EC dysfunction by decreasing the levels of adhesion molecules (E-selectin, Intercellular Adhesion Molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1]) and of von Willebrand Factor and reduced EC death. GABA-salt also reduced diet-induced reductions in the levels of eNOS, phosphorylated eNOS, VSMC proliferation and medial thickening in mouse aortic tissues, and attenuated Endothelin-1 levels in salt treated VSMCs. In summary, GABA-salt reduced high salt, high cholesterol diet induced hypertension in our mouse model by reducing M1 polarization, EC dysfunction, and VSMC proliferation.

Enhanced Proliferation and Altered Intracellular Zinc Levels in Early- and Late-Passage Mouse Aorta Smooth Muscle Cells

  • Moon Sung-Kwon;Ha Sang-Do
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.44-47
    • /
    • 2000
  • Cell growth and DNA synthesis were studied from a cultured early- and late- pas- sage mouse aorta smooth muscle cell (MASMC) because the proliferation of vascular smooth muscle cell (VSMC) is a key factor in development of atherosclerosis. In this study, the cells were cultured in fetal bovine serum (FBS) and stimulated by growth factors such as thrombin and platelet-derived growth factor-BB (PDGF-BB). Compared to the number of early-passage MASMC (passage 3 to 9) the number of late-passage MASMC (passage 30 to 40) in a normal serum state was increased 2 fold at Day 1, 3 and 6 in culture, respectively. Incorporation of $[^3H]$ thymidine into DNA induced by serum, PDGF and thrombin in late-passage MASMC was greater than those in early-passage MASMC. We also examined whether intracellular zinc levels would be an aging factor or not. The intracellular zinc level in early- and late-passage MASMC was monitored by using the zinc probe dye N-(6-methoxy-8-quinolyl)-p-toluenesulfonamide. It is interested that late-passage MASMC increased the intracellular fluorescence level of zinc, more than the early passage MASMC did. The alterations of intracellular zinc level occur concurrently with changes in MASMC proliferation rate during aging. This data suggest that the age-associated changes in zinc concentrations may provide a new in vitro model for the study of smooth muscle cell differentiation.

  • PDF

The Inhibitory Effect and Mechanism of Luteolin 7-Glucoside on Rat Aortic Vascular Smooth Muscle Cell Proliferation

  • Kim, Tack-Joong;Kim, Jin-Ho;Jin, Yong-Ri;Yun, Yeo-Pyo
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.67-72
    • /
    • 2006
  • The abnormal proliferation of aortic vascular smooth muscle cells (VSMCs) plays a central role in the pathogenesis of atherosclerosis and restenosis after angioplasty and possibly also in the development of hypertension. The present study was designed to examine the inhibitory effects and the mechanism of luteolin 7-glucoside (L7G) on the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs. L7G significantly inhibited the PDGF-BB-induced proliferation and the DNA synthesis of the VSMCs in a concentration-dependent manner. Pre-incubation of the VSMCs with L7G significantly inhibited the PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2), Akt and the phospholipase C $(PLC)-{\gamma}1$ activation. However, L7G had almost no affect on the phosphorylation of $PDGF-{\beta}$ receptor tyrosine kinase, which was induced by PDGF-BB. These results suggest that L7G inhibits the PDGF-BB-induced proliferation of VSMCs via the blocking of $(PLC)-{\gamma}1$, Akt, and ERK1/2 phosphorylation.

Inhibitory effects of Saiko-ka-Ryukotsu-Borei-To on the migration and proliferation of vascular smooth muscle cell and suppression of carotid intimal thickness after balloon injury in rats

  • Chung, Hwa-jin;Maruyama Ikuro;Tani Tadato;Lee, Sang-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.207.3-208
    • /
    • 2003
  • Objectives:We have reported that oral administration of Saiko-ka-Ryukotsu-Borei-To (SRB), a traditional Chinese formulation, inhibited the intimal thickening in carotid artery after balloon injury in cholesterol-fed rats. To elucidate its mechanism, the effects of SRB on migration and proliferation of vascular smooth muscle cell (VSMC) were examined in vivo and in vitro.Methods: < In vivo-study> Rats were fed on diet containing 1% cholesterol and SRB 3 days before and 4 days after denudation. Simvastatin was used as a positive control. (omitted)

  • PDF

Nucleotide-binding oligomerization domain protein 2 attenuates ER stress-induced cell death in vascular smooth muscle cells

  • Kwon, Min-Young;Hwang, Narae;Lee, Seon-Jin;Chung, Su Wol
    • BMB Reports
    • /
    • v.52 no.11
    • /
    • pp.665-670
    • /
    • 2019
  • Nucleotide-binding oligomerization domain protein 2 (NOD2), an intracellular pattern recognition receptor, plays important roles in inflammation and cell death. Previously, we have shown that NOD2 is expressed in vascular smooth muscle cells (VSMCs) and that NOD2 deficiency promotes VSMC proliferation, migration, and neointimal formation after vascular injury. However, its role in endoplasmic reticulum (ER) stress-induced cell death in VSMCs remains unclear. Thus, the objective of this study was to evaluate ER stress-induced viability of mouse primary VSMCs. NOD2 deficiency increased ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) in VSMCs in the presence of tunicamycin (TM), an ER stress inducer. In contrast, ER stress-induced cell death and expression levels of apoptosis mediators (cleaved caspase-3, Bax, and Bak) were decreased in NOD2-overexpressed VSMCs. We found that the $IRE-1{\alpha}-XBP1$ pathway, one of unfolded protein response branches, was decreased in NOD2-deficient VSMCs and reversed in NOD2-overexpressed VSMCs in the presence of TM. Furthermore, NOD2 deficiency reduced the expression of XBP1 target genes such as GRP78, PDI-1, and Herpud1, thus improving cell survival. Taken together, these data suggest that the induction of ER stress through NOD2 expression can protect against TM-induced cell death in VSMCs. These results may contribute to a new paradigm in vascular homeostasis.

The Increase of Calcium Current in Smooth Myocytes of Mesenteric Arteriole of Rat with Diabetes Mellitus Induced Hypertension

  • Park Gyeong-Seon;Jang Yeon-Jin;Park Chun-Sik;Im Chae-Heon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.61-62
    • /
    • 1999
  • ;The mechanisms inducing hypertension are actively investigated and are still challenging topics. Basically hypertension must be caused by the disorder of $Ca^{2+}$ metabolism in vascular smooth muscle, such as the increase of $Ca^{2+}$ influx, the decrease of ci+ efflux, or the change of sensitivity of contractile protein etc. The one of cause of the increase of ci+ influx may be the change of ci+ channel activity. Even though the relationships of ci+ channel activity and hypertension were studied using various hypertension models, still it is not clear how much change of $Ca^{2+}$ channel activity in diabetes mellitus (DM) induced hypertension is occurred. We induced DM hypertension in SD rat and compared the $Ca^{2+}$ channel activity with age-matched normotensive SD rat. For inducing DM hypertension, left kidney was removed with 200 gm rat and, after 1 month, 60 mg/kg of streptozotocin was injected into peritoneal space to induce diabetes mellitus. Usually after 4-6 weeks, hypertension was fully induced. For isolating vascular smooth muscle cells (VSMC), we used mesenteric arteriole (3rd - 4th branch of mesenteric artery) of which diameter is below 150 urn. VSMCs were isolated enzymatically. $Ca^{2+}$ current was measured using whole cell patch clamp technique. All experiments were performed at $37^{\circ}C$. The cell membrane area of VSMC of DM hypertensive rat is larger than that of control VSMC($36.6{\pm}3.64{\;}pF{\;}vs{\;}22.4{\pm}1.29{\;}pF, {\;}mean{\pm}S.E.$) When we compared the current amplitude, the $Ca^{2+}$ current amplitude in VSMC of DM hypertensive rat is much larger than that in VSMC of normotensive age-matched rat. After $Ca^{2+}$ current amplitude was normalized by cell membrane area, the current amplitude in DM hypertension is increased to $249.1{\pm}15.9{\;}%{\;}(mean{\pm}S.E.M)$, which means the ;absolute current amplitude is about 4 times larger in DM hypertension. When we compared the steady state activation and inactivation. there were no noticeable differences. From these results. one of cause of the DM hypertension is due to the increase of $Ca^{2+}$ current amplitude. But it need further study why the $Ca^{2+}$ current is so large in VSMC of DM hypertension and how much $Ca^{2+}$ influx through $Ca^{2+}$ channel contribute to the increase of intracellular $Ca^{2+}$ and eventually contribute to development of hypertension.ypertension.

  • PDF