• Title/Summary/Keyword: Vascular cell adhesion molecule-1 (VCAM-1)

Search Result 74, Processing Time 0.022 seconds

Effects of Plasma Lipoproteins on Expression of Vasular Cell Adhesion Molecule- in Human Microvasuclar Endothelial Cells (혈관내피세포에서 Vascular Cell Adhesion Molecule-1 발현에 대한 혈장 지단백의 효과)

  • 박성희
    • Journal of Nutrition and Health
    • /
    • v.31 no.8
    • /
    • pp.1235-1243
    • /
    • 1998
  • Although an elevated plasma level of high density lipoprotein (HDL) is known as a protective component against the development of atherosclerosis and ensuing coronary heart diseases, the related mechanisms are still not established . It has been clearly demonstrated in the early stages of atherogenesis that adhesion of monocytes and lymphocytes to the vascular endothelium is enhanced via adhesion molecules, and that monocytes and macrophages accumulate in the subendothelial space. The present study has investigated whether isolated plasma HDL plays a role in protection against atherogenesis by inhibiting the expression of vascular cell adhesioin molecule-1(VCAM-1) on the endothelial cells. Effects of plasma native low density lipoprotein (LDL) and ac ethylated LDL(AcLDL) on VCAM-1 expression were also examined by using an immunocytochemical technique. While plasma HDL did not alter the basal expression of VCAM-1 , lipopolysaccharide(LPS) induction of this adhesion modlecule was markedly inhibited at a phyaiological concentration of HDL. In contrast, 30$\mu\textrm{g}$ protein/ml AcLDL increased sifnificantly both basal VCAM-1 expression and its LPD induction , suggesting that this modified LDL enhances leukocyte adhesiion to endothelial cells. Unlike AcLDL , plasma native LDL inhibited significantly VCAM-1 expression. This indicates that LDL did not undergo oxidative modificantion while incubated with endothelial cells. These results suggest that plasam HDL may inhibit atherogenesis by reducing the expression of adhesion molecules, which is a protective mechanism independent of tis reverse cholesterol transport function . Modified LDL is a potent iducer for adhesion molecules in vascular endothelical cells and could play a role in the pathogenesis of atherosclerosis by adhering to blood cells.

  • PDF

Ginsenoside Rg2 Inhibits Lipopolysaccharide-Induced Adhesion Molecule Expression in Human Umbilical Vein Endothelial Cell

  • Cho, Young-Suk;Kim, Chan Hyung;Ha, Tae-Sun;Lee, Sang Jin;Ahn, Hee Yul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.133-137
    • /
    • 2013
  • Vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), P- and E-selectin play a pivotal role for initiation of atherosclerosis. Ginsenoside, a class of steroid glycosides, is abundant in Panax ginseng root, which has been used for prevention of illness in Korea. In this study, we investigated the mechanism(s) by which ginsenoside Rg2 may inhibit VCAM-1 and ICAM-1 expressions stimulated with lipopolysaccharide (LPS) in human umbilical vein endothelial cell (HUVEC). LPS increased VCAM-1 and ICAM-1 expression. Ginsenoside Rg2 prevented LPS-mediated increase of VCAM-1 and ICAM-1 expression. On the other hand, JSH, a nuclear factor kappa B (NF-${\kappa}B$) inhibitor, reduced both VCAM-1 and ICAM-1 expression stimulated with LPS. SB202190, inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), and wortmannin, phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, reduced LPS-mediated VCAM-1 but not ICAM-1 expression. PD98059, inhibitor of mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) did not affect VCAM-1 and ICAM-1 expression stimulated with LPS. SP600125, inhibitor of c-Jun N-terminal kinase (JNK), reduced LPS-mediated ICAM-1 but not VCAM-1 expression. LPS reduced IkappaB${\alpha}$ ($I{\kappa}B{\alpha}$) expression, in a time-dependent manner within 1 hr. Ginsenoside Rg2 prevented the decrease of $I{\kappa}B{\alpha}$ expression stimulated with LPS. Moreover, ginsenoside Rg2 reduced LPS-mediated THP-1 monocyte adhesion to HUVEC, in a concentration-dependent manner. These data provide a novel mechanism where the ginsenoside Rg2 may provide direct vascular benefits with inhibition of leukocyte adhesion into vascular wall thereby providing protection against vascular inflammatory disease.

Expression of Some Adhesion Molecules on the Cultured Endothelial Cells of Human Umbilical Vein Infected with Hantaan Virus (한탄바이러스 감염 내피세포에서 부착분자의 발현 (II) -In Situ Hybridization-)

  • Chung, Sang-In;Shin, Sung-Il;Kim, Ki-Jeong;Kang, Eung-Taek;Yu, Suk-Hee;Choi, Chul-Soon;Yang, Yong-Tae
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • Histopathological vascular changes in hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus include increased vascular permeability, disseminated intravascular coagulation, thrombocytopenia and changes in coagulation activity. Although vascular endothelial cells of main target organs such as kidney infected with Hantaan virus are not damaged but swelling of endothelial cells, perivascular exudates and infiltration of mononuclear cells and fresh interstitial hemorrhages are common. However, the pathogenesis of cell infiltration and hemorrhages around vascular endothelial cells are not well understood. Some endothelial cell molecules or vascular adhesins that acts as adhesion moleulces for leukocyte are expressed on endothelial cells close to site of inflammation. However, whether the expression of endothelial adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial leukocyte adhesion molecule (ELAM) on vascular endothelial cells are increased by infection with Hantaan virus has not been studied. In this study, the relationship between the expression of VCAM-1, ICAM-1 and ELAM and adhesion of mononuclear cells on endothelial cells of human blood vessels infected with Hantaan virus was investigated. The endothelial cells of umbilical vein was passaged three times in culture medium and the monolayered cells were infected with $10^5\;pfu/ml$ of Hantaan virus grown in Vera E6 cell cultures. The multiplication of virus in cultured endothelial cells was monitored by immunohistochemistry and the expression of adhesion molecules was demonstrated by immunohistochemistry using monoclonal antibodies against VCAM-1, ICAM-1 and ELAM. And in situ hybriditation against ICAM-1 was also performed. The endothelial adhesion molecules, VCAM and ICAM, were expressed after 6 hours postinfection, respectively, and their expressions lasted for 72 hours. Similar expression of VCAM and ICAM appeared on endothelial cells by infection with virus, but the expression of ELAM was not recognized up to 72 hours postinfection. Microscopically, it was noted that many monocuclear cells adhered on endothelial cells infected with viruses. In an electronmicroscopic study, the transendothelial migration of mononuclear cells was observed on monolayered endothelial cells infected with virus. This results suggested that the endothelial adhesion molecules, particulary VCAM and ICAM, might be expressed on endothelial cells by infection with Hantaan virus and these molecules play a key role in the adhesion and extravasation of inflammatory cells around blood vessels.

  • PDF

Delphinidin Chloride Effects on the Expression of TNF-$\alpha$ Induced Cell Adhesion Molecules (TNF-$\alpha$에 의해 유도된 세포부착분자의 발현에 대한 Delphinidin chloride의 억제 효과)

  • Koh, Eun-Gyeong;Chae, Soo-Chul;Seo, Eun-Sun;Na, Myung-Suk;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.88-94
    • /
    • 2009
  • The process of atherosclerosis begins through secretion of inflammatory cytokine or adhesion of leukocyte from damage in blood vessels and transmigration. This study was conducted to investigate the effects of delphinidin chloride (DC) in the initial process of atherosclerosis on the expression of ICAM-1 (Intracellular Adhesion Molecule-1) and VCAM-1 (Vascular Adhesion Molecule-1) related to adhesion of leukocyte at the HUVEC (human umbilical vein endothelial cell line. As a result, cell growth inhibition rate at 50 ${\mu}M$ was respectively 4, 3 and 5% without cell toxicity. As a result of morphological observation monocyte-endothelial cell adhesion assay and optical microscope carried out to measure attachment of mononuclear cells to endothelial cells induced by Tumor necrosis factor-alpha (TNF-$\alpha$) at concentrations without cell toxicity, DC concentration-dependently suppressed attachment. When effects on the expression of VCAM-1 and ICAM-1, cell adhesion molecules induced from endothelial cells by TNF-$\alpha$, were comparatively analyzed using western blot analysis and RT-PCR methods, protein of VCAM-1 and ICAM-1 and expression at the level of mRNA were concentration-dependently reduced. Taken together, the results of this studies provide evidence that DC possess an anti-metastatic activity.

Inhibitory effect of the extract of Catalpa ovata G. Don. on endothelial adhesion molecule expression (개오동나무 추출물의 내피세포 부착분자 발현 억제 효과)

  • Choi, Byung-Min;Chong, Myong-Soo;Song, Ho-Joon
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.137-143
    • /
    • 2007
  • Objectives : Catalpa ovata G. Don (Bignoniaceae) has been shown to possess a variety of pharmacological activities. However, the effect of Catalpa ovata G. Don on endothelial adhesion molecule expression has not been reported. Methods : To examine the effect of Catalpa ovata G. Don on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), we used various methods such as Western blot analysis, reverse tranascription-polymerase chain reaction (RT-PCR), and luciferase activity assay. Results : 1. The extract of Catalpa ovata G. Don inhibited the expression of intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in HUVECs stimulated with TNF-${\alpha}$. 2. The extract of Catalpa ovata G. Don reduced TNF-${\alpha}$-induced adhesion of leukocytes to HUVECs. 3. In addition, The extract of Catalpa ovata G. Don inhibited the promoter activities of ICAM-1 and VCAM-1. Conclusions : These results that Catalpa ovata G. Don may be beneficial in the treatment of inflammatory such as atherosclerosis.

  • PDF

Effects of Olibanum Extracts on Vascular Cell Adhesion Molecules Expression (유향 추출물이 혈관내피세포 부착단백질 발현에 미치는 영향)

  • Lee, Soong-In;Kwon, Kang-Beom;Han, Jong-Hyun;Ryu, Do-Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.445-450
    • /
    • 2011
  • In order to validate the use of Olibanum as an anti-inflammatory drug in the traditional Korean medicine, I have investigated the effect of water-soluble extract of Olibanum (EO) on the expression of pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) in human umbilical vein endothelial cells (HUVECs) stimulated with tumor necrosis factor-${\alpha}$. The extract inhibited dose-dependently VCAM-1 expression without its cytotoxic effect on HUVECs, as measured by a flow cytometer using fluorescence-enhanced anti-VCAM-1 antibody, and significantly decreased mRNA levels of VCAM-1, as determined using reverse transcription polymerase chain reaction. These results suggest that Olibanum may have therapeutic potential in the control of endothelial disorders caused by inflammation.

γ-Irradiation Induced Adhesion Molecules are Reduced by Vitamin C in Human Endothelial Cells

  • Son, Eun-Wha;Kim, Byung-Oh;Pyo, Suh-Kneung
    • Biomolecules & Therapeutics
    • /
    • v.12 no.3
    • /
    • pp.145-150
    • /
    • 2004
  • Inflammation is a frequent radiation-induced reaction following therapeutic irradiation. Treatment of human umbilical endothelial cells (HUVEC) with ${\gamma}$-irradiation (${\gamma}$IR) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Since the upregulation of these proteins on endothelial cell Surface has been known to be associated with inflammation, interfering with the expression of adhesion molecules is an important therapeutic target. In the present study, we demonstrate that vitamin C inhibits ${\gamma}$IR induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose- and time dependent manner. Vitamin C a1so inhibited the production of Nitric oxide (NO) induced by ${\gamma}$IR. These data suggest that vitamin C has therapeutic potential for the treatment of various inflammatory disorder associated with an increase of endothelial leukocyte adhesion molecules.

Association between the simultaneous decrease in the levels of soluble vascular cell adhesion molecule-1 and S100 protein and good neurological outcomes in cardiac arrest survivors

  • Kim, Min-Jung;Kim, Taegyun;Suh, Gil Joon;Kwon, Woon Yong;Kim, Kyung Su;Jung, Yoon Sun;Ko, Jung-In;Shin, So Mi;Lee, A Reum
    • Clinical and Experimental Emergency Medicine
    • /
    • v.5 no.4
    • /
    • pp.211-218
    • /
    • 2018
  • Objective This study aimed to determine whether simultaneous decreases in the serum levels of cell adhesion molecules (intracellular cell adhesion molecule-1 [ICAM-1], vascular cell adhesion molecule-1 [VCAM-1], and E-selectin) and S100 proteins within the first 24 hours after the return of spontaneous circulation were associated with good neurological outcomes in cardiac arrest survivors. Methods This retrospective observational study was based on prospectively collected data from a single emergency intensive care unit (ICU). Twenty-nine out-of-hospital cardiac arrest survivors who were admitted to the ICU for post-resuscitation care were enrolled. Blood samples were collected at 0 and 24 hours after ICU admission. According to the 6-month cerebral performance category (CPC) scale, the patients were divided into good (CPC 1 and 2, n=12) and poor (CPC 3 to 5, n=17) outcome groups. Results No difference was observed between the two groups in terms of the serum levels of ICAM-1, VCAM-1, E-selectin, and S100 at 0 and 24 hours. A simultaneous decrease in the serum levels of VCAM-1 and S100 as well as E-selectin and S100 was associated with good neurological outcomes. When other variables were adjusted, a simultaneous decrease in the serum levels of VCAM-1 and S100 was independently associated with good neurological outcomes (odds ratio, 9.285; 95% confidence interval, 1.073 to 80.318; P=0.043). Conclusion A simultaneous decrease in the serum levels of soluble VCAM-1 and S100 within the first 24 hours after the return of spontaneous circulation was associated with a good neurological outcome in out-of-hospital cardiac arrest survivors.

Enhanced Expression of Cell Adhesion Molecules in the Aorta of Diabetic Mice is Mediated by gp91phox-derived Superoxide

  • Yun, Mi-Ran;Kim, Jong-Jae;Lee, Sun-Mi;Heo, Hye-Jin;Bae, Sun-Sik;Kim, Chi-Dae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Endothelial activation and subsequent recruitment of inflammatory cells are important steps in atherogenesis. The increased levels of cell adhesion molecules (CAM) have been identified in diabetic vasculatures, but the underlying mechanisms remain unclear. To determine the relationship among vascular production of superoxide, expression of CAM and diabetes, superoxide generation and expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E- and P-selectin in the aorta from control (C57BL/6J) and diabetic mice (ob/ob) were measured. In situ staining for superoxide using dihydroethidium showed an increased superoxide production in diabetic aorta, accompanied with an enhanced NAD(P)H oxidase activity. Immunohistochemical analysis revealed that the endothelial expression of ICAM-1 ($3.5{\pm}0.4$) and VCAM-1 ($3.8{\pm}0.3$) in diabetic aorta was significantly higher than those in control aorta ($0.9{\pm}0.5$ and $1.6{\pm}0.3$, respectively), accompanied with the enhanced expression of gp91phox, a membrane subunit of NAD(P)H oixdase. Furthermore, there was a strong positive correlation (r=0.89, P<0.01 in ICAM-1 and r=0.88, P<0.01 in VCAM-1) between ICAM-1/VCAM-1 expression and vascular production of superoxide. The present data indicate that the increased production of superoxide via NAD(P)H oxidase may explain the enhanced expression of CAM in diabetic vasculatures.

Porphyromonas Gingivalis Lipopolysaccharide Increases Monocyte Adhesion to Microvascular Endothelium by Induction of Adhesion Molecules

  • Kim, Su-Ryun;Park, Hyun-Joo;Bae, Soo-Kyung;Park, Ji-Hyun;Kim, Hyo-Sun;Koo, Tae-Hyeon;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • v.33 no.4
    • /
    • pp.149-154
    • /
    • 2008
  • Porphyromonas gingivalis, a major periodontal pathogen, has been implicated in the initiation and progression of periodontal disease. Endothelial dysfunction (Editor note: Aberrant and dysfunction are somewhat redundant. The authors may want to choose one or the other.) contributes to chronic periodontal inflammation. Using cDNA-representational difference analysis, we found that P.gingivalis lipopolysaccharide differentially induces a number of genes in human microvascular endothelial cells. Among these upregulated genes, we focused on intercellular adhesion molecule-1 (VCAM-1), which is crucial for leukocyte recruitment during vascular inflammation. P. gingivalis LPS significantly increased the expression of vascular cell adhesion molecule-1 (VCAM-1) as well as ICAM-1. Promoter assays revealed that the transcription of these cell adhesion molecules was mainly regulated by nuclear factor-${\kappa}B$ (NF-${\kappa}B$) in endothelial cells. Furthermore, P. gingivalis LPS significantly increased leukocyte adhesiveness to microvascular endothelial cells and to aortic endothelium. Taken together, our results demonstrate that P. gingivalis LPS activates microvascular endothelial cells through NF-${\kappa}B$-dependent expression of cell adhesion molecules.