• Title/Summary/Keyword: Varying coefficient

Search Result 587, Processing Time 0.03 seconds

Development of Modification Coefficient for Nonlinear Single Degree of Freedom System Considering Plasticity Range for Structures Subjected to Blast Loads (폭발 하중을 받는 구조물의 소성 범위를 고려한 비선형 단자유도 시스템의 수정계수 개발)

  • Tae-Hun Lim;Seung-Hoon Lee;Han-Soo Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.179-186
    • /
    • 2024
  • In this paper, a modification coefficient for equivalent single degree of freedom (SDOF), considering the plasticity range of the member subjected to shock wave type of blast load, was developed. The modification coefficient for the equivalent SDOF was determined through comparison with the analysis of a multi-degree of freedom (MDOF) system. The parameters influencing the equivalent SDOF system analysis were chosen as the boundary conditions of the member and the ratio of the duration of blast load to the natural period of the member. The modification coefficient was calculated based on the elastic load-mass transformation factor. The modification coefficient curve was derived using an elliptical equation to ensure it exists between the upper and lower parameter bounds. Using the modification coefficient on examples with varying cross sections and boundary conditions reduced the SDOF analysis error rate from 15% to 3%. This study shows that using the modification coefficient significantly improves the accuracy of SDOF analysis. The modification coefficient proposed in this study can be used for blast analysis.

Performance Evaluation of AV-MMA Adaptive Equalization Algorithm in high order QAM System (고차 QAM 시스템에서 AV-MMA 적응 등화 알고리즘의 성능 평가)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.109-114
    • /
    • 2015
  • This paper relates with the eualization performance of Adaptive Varying-MMA (AV-MMA) in order to the minimization of intersymbol interference that is occurs in the nonlinear communication channel. In order to obtain the error signal in the tap coefficient updating process of adaptive equalization algorithm, the present MMA uses the constant modulus. But in AV-MMA, the adaptively varying modulus are used according to the equalizer output, it is possible to reduce the error signal and possbile to improving the overall equalization performance. In order to improved equalization performance of the AV-MMA in the 64-QAM signal, the present MMA performance were compared. For this, the output signal constellation of equalizer, residual isi, maximum distortion, MSE and SER curves are applied. As a result of computer simulation, the AV-MMA has more better performance in the every performance index than MMA, and the SER performance shows that it has more robustness in high SNR environmnet compared to MMA.

Contact buckling behaviour of corrugated plates subjected to linearly varying in-plane loads

  • Dong, Jianghui;Ma, Xing;Zhuge, Yan;Mills, Julie E.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.333-348
    • /
    • 2018
  • An analytical method is developed for analysing the contact buckling response of infinitely long, thin corrugated plates and flat plates restrained by a Winkler tensionless foundation and subjected to linearly varying in-plane loadings, where the corrugated plates are modelled as orthotropic plates and the flat plates are modelled as isotropic plates. The critical step in the presented method is the explicit expression for the lateral buckling mode function, which is derived through using the energy method. Simply supported and clamped edges conditions on the unloaded edges are considered in this study. The acquired lateral deflection function is applied to the governing buckling equations to eliminate the lateral variable. Considering the boundary conditions and continuity conditions at the border line between the contact and non-contact zones, the buckling coefficients and the corresponding buckling modes are found. The analytical solution to the buckling coefficients is also expressed through a fitted approximate formula in terms of foundation stiffness, which is verified through previous studies and finite element (FE) method.

Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.71-83
    • /
    • 2020
  • Cantilever sheet pile walls are subjected to surcharge loading located on the backfill soil and at different distances from the top of the wall. The response of cantilever sheet pile walls to surcharge loadings at varying distances under seismic conditions is scarce in literature. In the present study, the influence of uniform surcharge load on cantilever sheet pile wall at varying distances from the top of the wall under seismic conditions are analyzed using finite difference based computer program. The results of the numerical analysis are presented in non-dimensional form like variation of bending moment and horizontal earth pressure along the depth of the sheet pile walls. The numerical analysis has been conducted at different magnitudes of horizontal seismic acceleration coefficient and vertical seismic acceleration coefficients by varying the magnitude and position of uniform surcharge from the top of the wall for different embedded depths and types of soil. The parametric study is conducted with different embedded depth of sheet pile walls, magnitude of surcharge on the top of the wall and at a distance from the top of the wall for different angles of internal friction. It is observed that the maximum bending moment increases and more mobilization of earth pressure takes place with increase in horizontal seismic acceleration coefficients, magnitude of uniform surcharge, embedded depth and decrease in the distance of surcharge from the top of the wall in loose sand.

An approximate formula to calculate the fundamental period of a fixed-free mass-spring system with varying mass and stiffness

  • Kim, Juwhan;CoIIins, Kevin R.;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.717-732
    • /
    • 2007
  • A formula to approximate the fundamental period of a fixed-free mass-spring system with varying mass and varying stiffness is formulated. The formula is derived mainly by taking the dominant parts from the general form of the characteristic polynomial, and adjusting the initial approximation by a coefficient derived from the exact solution of a uniform case. The formula is tested for a large number of randomly generated structures, and the results show that the approximated fundamental periods are within the error range of 4% with 90% of confidence. Also, the error is shown to be normally distributed with zero mean, and the width of the distribution (as measured by the standard deviation) tends to decrease as the total number of discretized elements in the system increases. Other possible extensions of the formula are discussed, including an extension to a continuous cantilever structure with distributed mass and stiffness. The suggested formula provides an efficient way to estimate the fundamental period of building structures and other systems that can be modeled as mass-spring systems.

The Swelling and Mechanical Properties of Hydrogels of Tactic Poly (2-Hydroxyethyl Methacrylate)

  • Lee, Joong-Whan;Kim, Eul-Hwan;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.4
    • /
    • pp.162-169
    • /
    • 1983
  • The swelling and stress-elongation experiments have been performed for two kinds of gels of tactic poly (2-hydroxyethyl methacrylate) (P-HEMA) with varying crosslinker concentrations. The gels of isotactic and syndiotactic P-HEMA were swollen in aqueous salt solutions upon varying molal concentrations. The solute used were NaCl, $MgCl_2$, $Na_2SO_4$, $MgSO_4$ and urea. The water content at equilibrium swelling and the salt partition coefficient were determined, and stress-elongation curves of the gels were obtained. From these results, the effective number of chain (${\nu}_e$) and the Flory-Huggins interaction parameter (${\chi}_1$) were also obtained. The swelling experiment was also performed under varying solvents, and the degree of swelling was determined. The solubility parameter of P-HEMA was obtained as 13.4 (cal/mole)$^{l/2}$ using the correlation between the degree of swelling and the solubility parameter (${\delta}_1$) of solvents. The mechanical properties of syndiotactic P-HEMA is stronger than that of isotactic P-HEMA, and the water content of both gels become smaller when the crosslinking increases. Isotactic P-HEMA contains more water content than syndiotactic P-HEMA does.

Extraction of optimal time-varying mean of non-stationary wind speeds based on empirical mode decomposition

  • Cai, Kang;Li, Xiao;Zhi, Lun-hai;Han, Xu-liang
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.355-368
    • /
    • 2021
  • The time-varying mean (TVM) component of non-stationary wind speeds is commonly extracted utilizing empirical mode decomposition (EMD) in practice, whereas the accuracy of the extracted TVM is difficult to be quantified. To deal with this problem, this paper proposes an approach to identify and extract the optimal TVM from several TVM results obtained by the EMD. It is suggested that the optimal TVM of a 10-min time history of wind speeds should meet both the following conditions: (1) the probability density function (PDF) of fluctuating wind component agrees well with the modified Gaussian function (MGF). At this stage, a coefficient p is newly defined as an evaluation index to quantify the correlation between PDF and MGF. The smaller the p is, the better the derived TVM is; (2) the number of local maxima of obtained optimal TVM within a 10-min time interval is less than 6. The proposed approach is validated by a numerical example, and it is also adopted to extract the optimal TVM from the field measurement records of wind speeds collected during a sandstorm event.

Calculation of Creep Coefficient for Concrete Structures Applying Time Step Analysis for Relative Humidity and Temperature (상대습도 및 온도에 대한 시간 단계 해석을 적용한 콘크리트 구조의 크리프계수 산정 )

  • Kyunghyun Kim;Ki Hyun Kim;Inyeol Paik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.75-83
    • /
    • 2023
  • As part of a study to analyze the excessive camber occurring in prestressed concrete railway bridges, this paper presents a calculation method and analysis results for the creep coefficient which defines the increase in camber of a concrete structure over time. Using the creep coefficient formula of the design code, the coefficient is obtained by applying the climatic conditions (relative humidity and temperature) of 12 regions in Korea. The effects of differences in climatic conditions by region and starting time of load on the creep coefficient are analyzed. In order to properly calculate the creep, most of which occurs in the early stages of loading, a detailed analysis is performed by applying a time step analysis method to consider varying climate conditions through loaded period. The creep coefficient obtained by applying the average climate conditions of the region is similar to the average of the creep coefficients obtained by time step analysis. Through time step analysis, it is shown that the offset and overlap effects of relative humidity and temperature on the creep coefficient and the climate effect at the time of initial loading can be appropriately represented.

Comparison of Heat Transfer in Both the Riser and Downcomer of a Circulating Fluidized Bed

  • Hassanein, Soubhi A.;Dahab, O.M.
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.24-32
    • /
    • 2004
  • The characteristics of heat transfer from horizontal cylinder immersed in both a riser and downcomer of a circulating fluidized beds were investigated experimentally under different values of solids mass flux, superficial air velocity, particle size diameter, and different bed materials. The test results indicated that local heat transfer coefficients in both riser and downcomer are strongly influenced by angular position, and mass flux, as well as by particle size and bed materials. The local heat transfer coefficients around a circumference of the cylinder inside a riser and downcomer of a CFB exhibited a general tendency to increase with decreasing particle size and increasing solids mass flux and vary with different bed materials. Also the averaged heat transfer coefficient calculated from local heat transfer coefficient exhibited the same trend as a local i.e increase with decrease particle size and increasing solids mass flux and vary with varying bed materials. The general trend for a riser local heat transfer coefficient is decrease with increase angle until ${\Phi}$ = 0.5-0.6 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Also the general trend for a local heat transfer coefficient in downcomer is to increase with increase the angle until ${\Phi}$= ${\theta}/{\Pi}$ = 0.3-0.5 (Where at angle =180$^{\circ}$ ${\Phi}$ =1). Comparison the results of the heat transfer in the riser and downcomer of a circulating fluidized beds shows that they have approximately the same trend but the values of heat transfer coefficients in riser is higher than in downcomer.

  • PDF

Reappraisal of Mean-Reversion of Stock Prices in the State-Space Model (상태공간모형에서 주가의 평균회귀현상에 대한 재평가)

  • Jeon, Deok-Bin;Choe, Won-Hyeok
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.173-179
    • /
    • 2006
  • In order to explain a U-shape pattern of stock returns, Fama and French(1988) suggested the state-space model consisting of I(1) permanent component and AR(1) stationary component. They concluded the autoregression coefficient induced from the state-space model follow the U-shape pattern and the U-shape pattern of stock returns was due to both negative autocorrelation in returns beyond a year and substantial mean-reversion in stock market prices. However, we found negative autocorrelation is induced under the assumption that permanent and stationary noise component are independent in the state-space model. In this paper, we derive the autoregression coefficient based on ARIMA process equivalent to the state-space model without the assumption of independency. Based on the estimated parameters, we investigate the pattern of the time-varying autoregression coefficient and conclude the autoregression coefficient from the state-space model of ARIMA(1,1,1) process does not follow a U-shape pattern, but has always positive sign. We applied this result on the data of 1 month retums for all NYSE stocks for the 1926-85 period from the Center for Research in Security Prices.

  • PDF