References
- Abrate, S. (1986), 'Vibration of non-unifonn rods and beams', J. Sound Vib., 185, 703-716 https://doi.org/10.1006/jsvi.1995.0410
- Artin, M. (1991), Algebra. Prentice-Hall, New Jersey, First edition
- Bapat, C.N. (1995), 'Vibration of rods with uniformly tapered sections', J. Sound Vib., 185, 185-189 https://doi.org/10.1006/jsvi.1995.0371
- Braun, M. (2003), 'On some properties of the multiple pendulum', Archive of Appl. Mech., 72, 899-910
- Cha, P. (2005), 'A general approach to formulating the frequency equation for a beam carrying miscellaneous attachments', J. Sound Vib., 286, 921-939 https://doi.org/10.1016/j.jsv.2004.10.012
- Chen, D.-W. (2006), 'An exact solution for free torsional vibration of a uniform circular shaft carrying multiple concentrated elements', J. Sound Vib., 291, 627-643 https://doi.org/10.1016/j.jsv.2005.06.034
- Chen, S., Guo, K. and Chen, Y. (2004), 'A method for estimating upper and lower bounds of eigenvalues of closed-loop systems with uncertain parameters', J. Sound Vib., 276, 527-539 https://doi.org/10.1016/j.jsv.2003.08.011
- Chopra, A.K. (1995), Dynamics of Structures. Prentice Hall
- Elliot, J.F. (1953), 'The characteristic roots of certain real symmetric matrices', Master's thesis, University of Tennessee
- Gokda, H. and Kopmaz, O. (2005), 'Eigenfrequencies of a combined system including two continua connected by discrete elements', J. Sound Vib., 284, 1203-1216 https://doi.org/10.1016/j.jsv.2004.08.022
- Goldberg, J.L. (1992), Matrix Theory with Applications. McGraw-Hill
- Gregory, R.T. (1978), A Collection of Matrices for Testing Computational Algorithms. R.E. Krieger Pub. Co
- Gupta, A. and Krawinkler, H. (2000), 'Behavior of ductile special moment resisting frames at various seismic hazard levels', J. Struct. Eng., 126(1), 98-107 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:1(98)
- Gtirgoze, M. (1996), 'On the eigenfrequencies of cantilevered beams carrying a tip mass and spring-mass inspan', Int. J. Mech. Sci., 28(12), 1295-1306
- Gtirgoze, M. (2005), 'On the eigenfrequencies of a cantilever beam carrying a tip spring-mass system with mass of the helical spring considered', J. Sound Vib., 282, 1221-1230 https://doi.org/10.1016/j.jsv.2004.04.020
- Gtirgoze, M. (2006), 'On some relationships between the eigenfrequencies of torsional vibrational systems containing lumped elements', J. Sound Vib., 290, 1322-1332 https://doi.org/10.1016/j.jsv.2005.05.011
- Gtirgoze, M. and Zeren, S. (2006), 'On the eigencharacteristics of an axially vibrating viscoelastic rod carrying a tip mass and its representation by a single-degree-of-freedom system', J. Sound Vib., 294, 388-396 https://doi.org/10.1016/j.jsv.2005.11.006
- Iwan, W.D. (1995), 'Drift demand spectra for selected northridge sites', SAC Final Report, number 95-07 in Earthquake Engineering Research Laboratory Report, California Institute of Technology, Pasadena, California
- Jacobsen, L.S. and Ayre, R.S. (1958), Engineering Vibrations. McGraw-Hill
- Kim, J. (2003), Performance-Based Building Design Using Wave Propagation Concepts. Department of Civil and Environmental Engineering, The University of Michigan at Ann Arbor, Ann Arbor, Michigan
- Kim, J, Collins, K.R. and Lim, Y.M. (2006), 'Application of internally damped shearbeam model to analysis of buildings under earthquakes: Robust procedure for quick evaluation of seismic performance', J. Struct. Eng., 132(7), 1139-1149 https://doi.org/10.1061/(ASCE)0733-9445(2006)132:7(1139)
- Kumar, B.M. and Sujith, R.I. (1997), 'Exact solutions for the longitudinal vibration of nonuniform rods', J. Sound Vib., 207, 721-729 https://doi.org/10.1006/jsvi.1997.1146
- Lee, K.-Y and Renshaw, A.A. (2002), 'A numerical comparison of alternative galerkin methods for eigenvalue estimation', J. Sound Vib., 253(2), 359-372 https://doi.org/10.1006/jsvi.2001.4046
- Li, Q.S., Wu, J.R. and Xu, J. (2002), 'Longitudinal vibration of multi-step non-uniform structures with lumped masses and spring support', Appl. Acoust., 63, 333-350. technical note https://doi.org/10.1016/S0003-682X(01)00034-2
- Li, W. (2003), 'A degree selection method of matrix condensations for eigenvalue problems', J. Sound Vib., 259(2), 409-425 https://doi.org/10.1006/jsvi.2002.5336
- Low, K.H. (2000), 'A modified dunkerley formula for eigenfrequencies of beams carrying concentrated masses', Int. J. Mech. Sci., 42,1287-1305 https://doi.org/10.1016/S0020-7403(99)00049-1
- Meirovitch, L. (1986), Elements of Vibration Analysis. McGraw-Hill, second edition
- Press, W.H., Teukolsky, S.A, Vettering, W.T. and Flannery, B.P. (1992), Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, second edition
- Rajendran, S. (2002), 'Computing the lowest eigenvalue with rayleigh quotient iteration', J. Sound Vib., 254(3), 599-612 https://doi.org/10.1006/jsvi.2001.4102
- Strobach, D. and Braun, M. (2003), 'On some property of the natural frequencies of elastic chains', Proc. in Appl. Math. Mech., 3, 128-129
- Structural Engineers Association of California (1997), Uniform Building Code. International Conference of Building Officials, Whittier, California
- Thomson, W.T. (1981), Theory of Vibration with Applications. Prentice-Hall, second edition
Cited by
- A simplified method for estimating fundamental periods of pylons in overhead electricity transmission systems vol.19, pp.2, 2007, https://doi.org/10.12989/eas.2020.19.2.119