• 제목/요약/키워드: Various temperature

검색결과 12,876건 처리시간 0.032초

CuAINi 형상기억합금의 시효처리에 따른 상변태 거동 (Phase Transformation Behavior on Aging Treatment in CuAINi Shape Memory Alloy)

  • 앙권승;강조원
    • 열처리공학회지
    • /
    • 제6권4호
    • /
    • pp.213-222
    • /
    • 1993
  • This research was performed to investigate the transformation behavior and shape memory effect of Cu-13.5Al-4.5Ni(wt%) alloy with various aging temperature and time. The results obtained in this study are as follows: Transformation temperature was very increased when aging temperature is at $250^{\circ}C$. The variation of transformation temperature in first reverse transformation cycle and second was very significant, but there was little difference in case of 2nd and 3rd. Transformation temperature at various aging temperature was increased with increasing of aging temperature and time. Microvickers hardness was increased with increasing of aging temperature and time. It was found that ${\alpha}$ and ${\gamma}_2$ phase were created by aging of long time at high temperature.

  • PDF

Impact of fuel temperature on nuclear core design calculations

  • Dusan Calic;Luka Snoj;Marjan Kromar
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3668-3685
    • /
    • 2024
  • The operation of a nuclear power plant relies on precalculated nuclear design predictions based on core calculations of various reactor states. The fuel temperature is a crucial factor in determining the reactor fuel behavior, but assessing the temperature variation in a fuel pellet taking into account neutron transport is challenging. Detailed simulation of the temperature behavior within the fuel pellet can be obtained by coupling of Monte Carlo neutron transport codes with thermal-hydraulics solvers. However, this approach is not practical for standard nuclear design calculations, and computationally cheaper and faster methods must be used. In nuclear core simulators, a concept of a single "effective temperature" that yields the same neutron response as in the case of the actual temperature shape is mainly applied. This paper evaluates various fuel temperature models used in nuclear core simulation calculations, ultimately recommending a new effective temperature model that considers the burnup correction.

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • 제33권5호
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

응축수온도가 저온지열발전 성능에 미치는 영향 연구 (A Study of the Influence of Condensing Water Temperature on Low Temperature Geothermal Power Generation)

  • 김진상;이충국
    • 한국지열·수열에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.17-23
    • /
    • 2007
  • Geothermal energy is used in various forms, such as power generation, direct use, and geothermal heat pumps. High temperature geothermal energy sources have been used for power generation for more than a century. Recent technical advances in power generation equipments make relatively low temperature geothermal energy to be available for power generation. In these applications, lower temperature geothermal energy source makes smaller difference between condensing water temperature and it. Various condensing water temperatures were investigated in analyzing its influence on power generation performance. Condensing water temperature of organic Rankine cycle imposed greater influence on power generation and its performance in lower temperature geothermal power generation.

  • PDF

시간-온도 중첩이론을 적용한 아스팔트 바인더의 점소성 구성 모형 (A Viscoplastic Constitutive Model Based on Overstress Concept with Time-Temperature Superposition Principle)

  • 윤태영;엄병식;유평준;김연복
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.75-83
    • /
    • 2012
  • PURPOSES: Suggestion of asphalt binder constitutive model based on time-temperature superposition principle and overstress concept in order to describe behavior of asphalt binders. METHODS: A series of temperature sweep tests and multiple stress creep and recovery(MSCR) tests are performed to verify the applicability of time-temperature superposition principle(t-Ts) and to develop viscoelastoplastic constitutive equation based on overstress concept. For the tests, temperature sweep tests at various high temperature and various frequency and MSCR test at $58^{\circ}C$, $64^{\circ}C$ $70^{\circ}C$, $76^{\circ}C$, and $82^{\circ}C$ are performed. From the temperature sweep tests, dynamic shear modulus mastercurve and time-temperature shift function are built and the shift function and MSCR at $58^{\circ}C$ are utilized to determine model coefficients of VBO model. RESULTS: It is observed that the time-temperature shift function built at low strain level of 0.1% is applicable not only to 1.0% strain level temperature sweep test but also maximum 500,00% strain level of MSCR test. As well, the modified VBO model shows perfect prediction on MSCR measured strain at the other temperatures. CONCLUSIONS: The Time-temperature superposition principle stands hold from very low strain level to very high strain level and that the modified VBO model can be applicable for various range of strain and temperature region to predict elastic, viscoelastic, and viscoplastic strain of asphalt binders.

Salmonella thphi Ty21a의 동결 건조와 안정성 (The lyophilization and stability of Salmonella typhi Ty21a)

  • 김세란;박동우;전홍렬;김희준;한성순;김기호;김홍진
    • 약학회지
    • /
    • 제43권6호
    • /
    • pp.793-797
    • /
    • 1999
  • Salmonella typhi Ty21a is an attenuated strain of S. typhimurium and used for oral typhoid vaccine. In an attempt to increase the stability of Ty21a manufacturing typhoid vaccine, we studied about the stability of freeze-dried Th21a including additives at various temperature conditions. In order to investigate the freeze-drying rate of Ty21a according to various absorbance, we lyophilized Ty21a by using 8% sucrose as a stabilizer. The optimal freeze-drying rate of Ty21a was appeared when OD (optical density) value of the growth was between 2.5 and 3.0. To investigate the stability of Ty21a at various temperature, the viability was measured after storaging the freeze-dried Ty21a at the room temperature, cold and freezing condition for 1 week. The viability of Ty21a in cold and freezing storage condition was 5 times more stable than in room temperature. To search the most stable additives for the freeze-dried Ty21a, the viability of Ty21a including additives at the various storage condition was estimated. Mannitol and loctose were the most stable additives. Theses results suggest that the OD value of Ty21a growth, low temperature, mannitol and lactose are important factors for the optimal freeze-drying rate, the stable storage and the most stable additives, respectively.

  • PDF

지종열 활용에 따른 온도변화 모니터링 (Monitoring of Subsurface Temperature Variation as Geothermal Utilization)

  • 이태종;심병완;송윤호
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 2010
  • Long-term temperature monitoring has been performed for ground heat exchanger at the Earthquake Research Center (ERC) building in Korea Institute of Geoscience and Mineral Resources (KIGAM). For the 3 years of monitoring, overall temperature increases are observed at various depths within a borehole heat exchanger. But monitoring of ground temperature variation at the monitoring well beforehand showed that geothermal utilization is not the only source for the temperature increase, Because various kinds of sources can cause the ground temperature change, more thorough investigation should be followed.

우주항공용 저온 경화 접착제의 고온 물성에 관한 연구 (A Study on Adhesive Crosslinked in Low Temperature for High Temperature Aerospace Application)

  • 송정근;우현률;이금미;최두현
    • 한국군사과학기술학회지
    • /
    • 제22권2호
    • /
    • pp.215-223
    • /
    • 2019
  • A high temperature adhesive development which is crosslinked in low temperature is necessary for aerospace application because of thermal expansion mismatches of various substrates. For this purpose, we have designed and fabricated several formulations with high temperature epoxy resins, crosslinkers and additives considering various working conditions and high service temperature. As a result, some formulations showed higher adhesive strengths than Hysol EA 9394/C2 which is widely used for aerospace applications. We also have studied and summarized the mechanical properties of the best development adhesive in both room and high temperatures.

SOUR을 이용한 하수처리시설 포기조 설계 적용에 관한 연구 (Applicability Study of Reactor Design in Sewage Treatment Plant using Specific Oxygen Uptake Rate)

  • 주현종;김성철;이광현
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.140-147
    • /
    • 2010
  • In existing design method for aeration tank water temperature was considered as governing variable for applying safety factor. This study tried a few new approach of aeration tank design using SOUR at various temperature conditions. Specific substrate utilization rate (U) and specific oxygen uptake rate (SOUR) both were analyzed at various temperature and SRT. The laboratory scale reactor was operated on various temperature ($10^{\circ}C$, $20^{\circ}C$, $25^{\circ}C$) and SRT (5day, 10day, 20day, 30day). In this study, SOUR tended to increase with the temperature increased. On the other hand, SOUR tended to decrease when SRT increased from 5 days to 30 days. Empirical equations were obtained SOUR=a/SRT+b and $SOUR=(a/m){\cdot}U+(b-a(n/m))$ from the relationship between SRT, U and SOUR. Empirical equations shows the possibility as a new design method for the aeration basin.

옥상녹화조성에 따른 온도저감효과에 관한 연구 -서울대학교 실험구를 중심으로- (The Effect of Temperature Reduction as Influenced by Rooftop Greening)

  • 이동근;윤소원;오승환;장성완
    • 한국환경복원기술학회지
    • /
    • 제8권6호
    • /
    • pp.34-44
    • /
    • 2005
  • The objective of this study is to analyze the thermal properties of various green roof type. The experimental districts, have different soil thickness, soil type, the existence of module and the different kinds of vegetation, had installed. A measurement was conducted in Seoul University to investigate the thermal impacts of rooftop greening. The measurement point of temperature were 30, located in soil surface, middle of the soil layer, under the module, hard surface and soffit surface of each experimental district. The experimental investigation lasted from 6th August to 29th August, a total of 24 days. The results showed that green roof can contribute thermal benefits by soil and vegetation and reduce building energy consumption by a role of insulation. It's also better to make soil thickness over 20cm and various vegetation that should be more effective. The district installed only soil also could be effective for reducing the temperature of roof surface. Therefore, the increase of soil thickness and various vegetation could reduce more temperature of roof surface and building energy consumption. Also, it's helpful to reduce temperature that plant coverage rate be raised.