• Title/Summary/Keyword: Various temperature

Search Result 12,876, Processing Time 0.034 seconds

Performance Characteristics of a Heat Pipe Having Water-Ethanol Mixture as Working Fluid for Evacuated Solar Collectors (물-에탄올 혼합물을 작동유체로 하는 진공관형 태양열 집열기용 히트파이프의 작동특성)

  • Jung, Eui-Guk;Boo, Joon-Hong;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.5
    • /
    • pp.78-84
    • /
    • 2008
  • Heat pipes are considered to be promising candidates to enhance the heat transport capability of evacuated solar collectors in a wide temperature range. The working fluid must be selected properly considering various operating conditions of heat pipes for medium-high temperature range to avoid dry-out, local overheating, and frozen failure. The advantage of using binary mixture as heat pipe working fluid is that it can extend operating temperature range of the system as it can overcome operating temperature limit of a single fluid. Various operating temperature ranges were imposed in the experiments to simulate the actual operation of solar collectors using water-ethanol binary mixture. Tests were conducted for the coolant temperature range of -10$^{\circ}C$ to 120$^{\circ}C$, and mixing ratio range was from 0 to 1 based on mass fraction.

Characteristics of Spontaneous Combustion of Various Fuels for Coal-Fired Power Plant by Carbonization Rank

  • Kim, Jae-kwan;Park, Seok-un;Shin, Dong-ik
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.2
    • /
    • pp.83-92
    • /
    • 2019
  • Spontaneous combustion propensity of various coals of carbonization grade as a pulverized fuel of coal-fired power plant has been tested from an initial temperature of $25^{\circ}C$ to $600^{\circ}C$ by heating in an oven with air to analyze the self-oxidation starting temperature. These tests produce CPT (Cross Point Temperature), IT (Ignition temperature), and CPS (Cross Point Slope) calculated as the slope of time taken for a rapid exothermic oxidation reaction at CPT base. CPS shows a carbonization rank dependence whereby wood pellet has the highest propensity to spontaneous combustion of $20.995^{\circ}C/min$. A sub-bituminous KIDECO coal shows a CPS value of $15.370^{\circ}C/min$, whereas pet coke has the highest carbonization rank at $2.950^{\circ}C/min$. The nature of this trend is most likely attributable to a concentration of volatile matter and oxygen functional groups of coal surface that governs the available component for oxidation, as well as surface area of fuel char, and constant pressure molar heat.

Vibration analysis of sandwich truncated conical shells with porous FG face sheets in various thermal surroundings

  • Rahmani, Mohsen;Mohammadi, Younes;Kakavand, Farshad
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.239-252
    • /
    • 2019
  • Since conical sandwich shells are important structures in the modern industries, in this paper, for the first time, vibration behavior of the truncated conical sandwich shells which include temperature dependent porous FG face sheets and temperature dependent homogeneous core in various thermal conditions are investigated. A high order theory of sandwich shells which modified by considering the flexibility of the core and nonlinear von Karman strains are utilized. Power law rule which modified by considering the two types of porosity volume fractions are applied to model the functionally graded materials. By utilizing the Hamilton's energy principle, and considering the in-plane and thermal stresses in the face-sheets and the core, the governing equations are obtained. A Galerkin procedure is used to solve the equations in a simply supported boundary condition. Uniform, linear and nonlinear temperature distributions are used to model the effect of the temperature changing in the sandwich shell. To verify the results of this study, they are compared with FEM results obtained by Abaqus software and for special cases with the results in literatures. Eigen frequencies variations are surveyed versus the temperature changing, geometrical effects, porosity, and some others in the numerical examples.

Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations

  • Bang, Shinhyo;Kim, Ho-a;Noh, Jae-soo;Kim, Donguk;Keum, Kyunghwan;Lee, Youho
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1579-1587
    • /
    • 2022
  • The effects of hydride amount (20-850 wppm), orientation (circumferential and radial), and temperature (room temperature, 100 ℃, 200 ℃) on the axial mechanical properties of Zircaloy-4 cladding were comprehensively examined. The fraction of radial hydride fraction in the cladding was quantified using PROPHET, an in-house radial hydride fraction analysis code. Uniaxial tensile tests (UTTs) were conducted at various temperatures to obtain the axial mechanical properties. Hydride orientation has a limited effect on the axial mechanical behavior of hydrided Zircaloy-4 cladding. Ultimate tensile stress (UTS) and associated uniform elongation demonstrated limited sensitivity to hydride content under UTT. Statistical uncertainty of UTS was found small, supporting the deterministic approach for the load-failure analysis of hydrided Zircaloy-4 cladding. These properties notably decrease with increasing temperature in the tested range. The dependence of yield strength on hydrogen content differed from temperature to temperature. The ductility-related parameters, such as total elongation, strain energy density (SED), and offset strain decrease with increasing hydride contents. The abrupt loss of ductility in UTT was found at ~700 wppm. Demonstrating a strong correlation between total elongation and offset strain, SED can be used as a comprehensive measure of ductility of hydrided zirconium alloy.

Optimal PID Control for Temperature Control of Chiller Equipment (칠러장비의 온도제어를 위한 최적 PID 제어)

  • Park, Young-shin;Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.131-138
    • /
    • 2022
  • The demand for chiller equipment that keeps each machine at a constant temperature to maintain the best possible condition is growing rapidly. PID (Proportional Integral Derivation) control is a popular temperature control method. The error, which is the difference between the desired target value and the current system output value, is calculated and used as an input to the system using a proportional, integrator, and differentiator. Through such a closed-loop configuration, a desired final output value of the system can be reached using only the target value and the feedback signal. Furthermore, various temperature control methods have been devised as the control performance of various high-performance equipment becomes important. Therefore, it is necessary to design for accurate data-driven temperature control for chiller equipment. In this research, support vector regression is applied to the classic PID control for accurate temperature control. Simulated annealing is applied to find optimal PID parameters. The results of the proposed control method show fast and effective control performance for chiller equipment.

Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics (온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화)

  • Hahnsoll Rhee;Rhokyun Kwak
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Effects of Temperature and Daylength on Growth and Grain Yield in Wheat (T. aestivum) (온도 및 일장조건이 소맥의 생육 및 수량에 미치는 영향)

  • Cho, C.H.;Chung, T.Y.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.24 no.2
    • /
    • pp.35-41
    • /
    • 1979
  • To observe the effects of temperature and photoperiod on the growth and yield of winter wheat (Triticum aestivum, L) eight varieties including Chang Kwang were tested at various treatments like longday-high temperature (24hrs-20\circ), shortdayhigh temperature (12hrs-20\circ), longday-low temperature (24hrs-14\circ) and shortday-low temperature (12hrs-14\circ). Among the traits measured, days to heading, plant height, spike length, number of spikes per hill and grain yield per hill were generally decreased at high temperature and long day treatment and increased at low temperature and shortday condition. Number of grains per spike was decreased at low temperature and short day condition while increased at longday and high temperature conditions. Grain weight was decreased significantly at high temperature and shortday while increased at low temperature and longday treatment.

  • PDF

Effects of environmental temperature and age on the elastic modulus of concrete

  • Yang, Shuzhen;Liu, Baodong;Li, Yuzhong;Zhang, Minqiang
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.737-746
    • /
    • 2019
  • Concrete mechanical properties change constantly with age, temperature, humidity and the other environmental factors. This research studies the effects of temperature and age on the development of concrete elastic modulus by a series of prism specimens. Elastic modulus test was conducted at various temperatures and ages in the laboratory to examine the effects of temperature and age on it. The experimental results reveal that the concrete elastic modulus decreases with the rise of temperature but increases with age. Then, a temperature coefficient K is proposed to describe the effects of temperature and validated by existing studies. Finally, on the basis of K, analytical models are proposed to determine the elastic modulus of concrete at a given temperature and age. The proposed models can offer designers an approach to obtain more accurate properties of concrete structures through the elastic modulus modification based on actual age and temperature, rather than using a value merely based on laboratory testing.

Denitrifications of Swine Wastewater with Various Temperature and Initial CM Ratio in Anoxic Reactor (무산소조에서 온도 및 초기 C/N비에 따른 축산폐수의 탈질특성)

  • 김민호;김복현
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2003
  • The biological denitrification batch tests were conducted to optimize the operating conditions with various temperature and initial SCO $D_{Cr}$ /N $O_3$-N ratio. and the denitrification rates were analyzed various SCO $D_{Cr}$ /N $o_3$-N ratio of influent with swine wastes fermented and temperature. The finishing time of denitrification was within 15 hours, 12 hours, and 6 hours as the temperature of denitrification applied were 15$\pm$1$^{\circ}C$, 25$\pm$1$^{\circ}C$, and 31$\pm$1$^{\circ}C$, respectively. From the batch tests, denitrification rate was operated with over 3 of SCO $D_{Cr}$ /N $O_3$-N ratio. Denitrification rate was increased as the temperature of denitrification, increased such as 2.40-3.90 mg N $O_3$-N/gMLVSSㆍhr, 6.10-7.60 mgN $O_3$-N/gMLVSSㆍhr, and 14.40-15.88 mgN $O_3$-N/gMLVSSㆍhr, respectively. The denitrification rate was increased as the ratio of initial SCO $D_{Cr}$ N $O_3$-N increased. However, it was found that the suitable ratio of SCO $D_{Cr}$ /N $O_3$-N for denitrification should be considered because the ratio of mg SCO $D_{Cr}$ , consumed per mg N $O_3$-N removed varied depend on the influent SCO $D_{Cr}$ /TKN ratios.