• Title/Summary/Keyword: Various cable elements

Search Result 25, Processing Time 0.025 seconds

Evaluation of Limit Strength for Steel Cable-Stayed Bridgesusing Various Cable Elements (다양한 케이블 요소를 이용한 강사장교의 극한강도 평가)

  • Song, Weon-Keun;Rhee, Jong Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.115-121
    • /
    • 2006
  • This paper deals with the influence of behavior of a variety of cable elements on the limit strength of steel cable-stayed bridges. The softening plastic-hinge model, which is represented in this study for the limit strength evaluation of the example bridge, considers both geometric and material nonlinearites. Geometric nonlinearity of beam-column members are accounted by using stability function, and material nonlinearity - by using CRC tangent modulus and parabolic function. Cable sag effect is considered for cable members. The result of this study shows that the limit strength of the example bridge using the equivalent of elasticity for truss straight elements is smaller than those using the cable or the catenary elements.

Enhanced finite element modeling for geometric non-linear analysis of cable-supported structures

  • Song, Myung-Kwan;Kim, Sun-Hoon;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.575-597
    • /
    • 2006
  • Enhanced three-dimensional finite elements for geometrically nonlinear analysis of cable-supported structures are presented. The cable element, derived by using the concept of an equivalent modulus of elasticity and assuming the deflection curve of a cable as catenary function, is proposed to model the cables. The stability functions for a frame member are modified to obtain a numerically stable solution. Various numerical examples are solved to illustrate the versatility and efficiency of the proposed finite element model. It is shown that the finite elements proposed in this study can be very useful for geometrically nonlinear analysis as well as free vibration analysis of three-dimensional cable-supported structures.

Wind-induced aerostatic instability of cable-supported bridges by a two-stage geometric nonlinear analysis

  • Yang, Y.B.;Tsay, Jiunn-Yin
    • Interaction and multiscale mechanics
    • /
    • v.1 no.3
    • /
    • pp.381-396
    • /
    • 2008
  • The aerostatic instability of cable-supported bridges is studied, with emphasis placed on modeling of the geometric nonlinear effects of various components of cable-supported bridges. Two-node catenary cable elements, which are more rational than truss elements, are adopted for simulating cables with large or small sags. Aerostatic loads are expressed in terms of the mean drag, lift and pitching moment coefficients. The geometric nonlinear analysis is performed with the dead loads and wind loads applied in two stages. The critical wind velocity for aerostatic instability is obtained as the condition when the pitching angle of the bridge deck becomes unbounded. Unlike those existing in the literature, each intermediate step of the incremental-iterative procedure is clearly given and interpreted. As such, the solutions obtained for the bridges are believed to be more rational than existing ones. Comparisons and discussions are given for the examples studied.

A Study on the Structural Behavior of Cable Domes (케이블 돔의 구조적 거동 특성에 관한 연구)

  • 한상을;윤종현;이승훈;진영상;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • Cable dome that consists of three component such as cable, strut and fabric membrane has complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system and fabric membrane element is conceived as cladding roof material. One of the important problem of cable dome is to investigate the structural response from external load effect such as snow and wind. When cable dome is subjected to load each structural component has various special structural characteristics. One is that geometrical nonlinearity should be considered because large deformation is occurred from their flexible characteristic. The other is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper researches the physical structural response of cable dome structure and the structural behavior when failure occurred at a part of structure.

  • PDF

A study result on coordinative protection method of HTS cable implemented distribution system (초전도케이블이 병입된 계통의 고장에 대한 보호협조 검토기법)

  • Lee, Hyun-Chul;Yang, Byeong-Mo;Lee, Geun-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.700-704
    • /
    • 2011
  • This paper proposes a coordinative protection study results of 22.9kV HTS(High-Temperature Superconducting) cable implemented distribution system. HTS cable can provide about 5 times larger transfer capacability compare to conventional XLPE cable, however, it has different heat characteristic so called quench. This paper presents the simulation results on Ichun substation HTS cable which connects main transformer and 22.9kV bus. Various expected fault cases are considered and discussed to examine whether conventional protection scheme is effective to protect both of existing facilities and HTS cable. With the results of simulation, conventional protection scheme can be used if instantaneous element and time inverse elements could be adjusted with proper time coordination. Internal temperatures of HTS cable conductor in safe region with proper protection without quench. This results are to be demonstrated by the field test and will be implemented in Ichon substation HTS cable protection and control system.

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

A Multi-noded Cable Element Considering Sliding Effects (슬라이딩을 허용하는 다절점 케이블요소)

  • Kim, Moon Young;Lee, Jun Seok;Han, Man Yop;Kim, Sung Bo;Kim, Nak Kyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.449-457
    • /
    • 2005
  • A multi-noded cable element allowing sliding at its nodes without frictions was introduced in this paper, and its elastic stiffness matrix was derived. A two-node truss element was briefly summarized and extended to multi-node, cable-truss elements that keep their tension constant but are connected without frictions through several nodes. The element elastic stiffness matrix of the multi-node,cable-truss elements was consistently derived. The steel wales pre-stressed externally in the IPS system were chosen as numerical examples and analyzed under various loading conditions. The cable tensions calculated using the present element were compared with the results of the flexibility method and those using the two-node truss element, respectively.

Dynamic Response of 3-D Cable-Stayed Bridge Considering the Sway Vibrational Effect of Stays (케이블 횡진동을 고려한 3차원 사장교의 동적거동)

  • 성익현
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.3
    • /
    • pp.36-45
    • /
    • 1999
  • The basic idea of cable-stayed girder bridges is the utilization of high strength cables to provide intermediate supports for the bridge girder so that the girder can span a much longer distance. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Techniques required for the static analysis of cable-stayed bridges has been developed by many researchers. However, little work has been done on the dynamic analysis of such structures. To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads. two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF

Mechanical Characteristics of Cable Truss Roof Systems (케이블 트러스 지붕 시스템의 역학적 특성)

  • Park, Kang-Geun;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 2016
  • Cable structures are lightweight structures of flexible type, cable members have only axial stiffness related to tension, they can carry neither bending nor compression. This study is the analysis of cable truss systems are composed of upper and low cables by connecting bracing cables, the structural principle is based on a tensegrity system by using bracing tension members, discontinuous compression members and continuous tension members. A hanging roof of cable truss system is too flexible against vertical loads, most cable members are stabilized by connecting the prestressed upper and lower cable by bracing cables. A cable truss roof system is formed by adding a set of cables with reverse curvature to the suspension cables. With the sets of cables having opposite curvature to each other, cable truss is able to carry vertical load in both upward and downward direction with equal effectiveness, and then a cable truss acts as load bearing elements by the assemble of ridge cables, valley cables and bracing cables. This paper will be shown the geometric non-linear analysis result of cable truss systems with various sag ratio for deflections and tensile forces, the analytical results are compared with the results of other researchers.

A Nonlinear Analysis of Cable Stayed Bridge including Sway Vibrational Effects using Multiple Cable Elements (다수 케이블요소를 사용한 사장교의 횡방향진동을 포함한 비선형 해석)

  • Seong, Ik-Hyun;Yoon, Ki-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.6
    • /
    • pp.661-670
    • /
    • 2000
  • To investigate the characteristics of the dynamic response of long-span cable-stayed bridges due to various dynamic loadings likes moving traffic loads, two different 3-D cable-stayed bridge models are considered in this study. Two models are exactly the same in structural configurations but different in finite element discretization. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. Futhermore case of asymmetric traffic loading clustered in one direction are also considered to study the torsional response of the bridge. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

  • PDF