• Title/Summary/Keyword: Various CM Applications

Search Result 183, Processing Time 0.023 seconds

Accuracy Analysis of UAV Data Processing Using DPW (DPW를 이용한 UAV 자료 처리의 정확도 분석)

  • Choi, Yun Woong;You, Ji Ho;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.4
    • /
    • pp.3-10
    • /
    • 2015
  • The various studies and applications for UAVS(Unmaned Aerial Vehicle System) have been recently increased as a new technology to create 3D spatial information rapidly and accurately. UAV(Unmanned Aerial Vehicle) is economical when comparing with conventional technique, such as satellite and aerial survey, and can quickly obtain high resolution data under 5cm. This paper examined the utilizing possibility to creating 3D spatial information and analysis the compatibility the UAV data obtained by non-metric digital camera with conventional numerical photogrammetric system. The DEM and normal orthophoto is created by exclusive S/W and DPW(Digital Photogrammetry Workstation) then analysis the accuracy of created data. As a result, the accuracy of the created DEM and normal orthophoto, which is obtained by UAV then processed by DPW, is not satisfied;so it is estimated that the compatibility the UAV data with conventional numerical photogrammetric system is low.

Surface Characteristics and Fibroblast Adhesion Behavior of RGD-Immobilized Biodegradable PLLA Films

  • Jung Hyun Jung;Ahn Kwang-Duk;Han Dong Keun;Ahn Dong-June
    • Macromolecular Research
    • /
    • v.13 no.5
    • /
    • pp.446-452
    • /
    • 2005
  • The interactions between the surface of scaffolds and specific cells play an important role in tissue engineering applications. Some cell adhesive ligand peptides including Arg-Gly-Asp (RGD) have been grafted into polymeric scaffolds to improve specific cell attachment. In order to make cell adhesive scaffolds for tissue regeneration, biodegradable nonporous poly(L-lactic acid) (PLLA) films were prepared by using a solvent casting technique with chloroform. The hydrophobic PLLA films were surface-modified by Argon plasma treatment and in situ direct acrylic acid (AA) grafting to get hydrophilic PLLA-g-PAA. The obtained carboxylic groups of PLLA-g-PAA were coupled with the amine groups of Gly-Arg-Asp-Gly (GRDG, control) and GRGD as a ligand peptide to get PLLA-g-GRDG and PLLA-g-GRGD, respectively. The surface properties of the modified PLLA films were examined by various surface analyses. The surface structures of the PLLA films were confirmed by ATR-FTIR and ESCA, whereas the immobilized amounts of the ligand peptides were 138-145 pmol/$cm^2$. The PLLA surfaces were more hydrophilic after AA and/or RGD grafting but their surface morphologies showed still relatively smoothness. Fibroblast adhesion to the PLLA surfaces was improved in the order of PLLA control

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Effect of Plasma Oxidation lime on TMR Devices of CoFe/AlO/CoFe/NiFe Structure (절연막층의 플라즈마 산화시간에 따른 CoFe/AlO/CoFe/NiFe 구조의 터널자기저항 효과 연구)

  • 이영민;송오성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.373-379
    • /
    • 2002
  • We investigated the evolution of magnetoresistance and magnetic property of tunneling magnetoresistive(TMR) device with microstructure and plasma oxidation time. TMR devices have potential applications for non volatile MRAM and high density HDD reading head. We prepared the tunnel magnetoresistance(TMR) devices of Ta($50{\AA}$)/NiFe($50{\AA}$)/IrMn($150{\AA}$)/CoFe($50{\AA}$)/Al($13{\AA}$)-O/CoFe($40{\AA}$)/FiFe($400{\AA}$)/Ta(($50{\AA}$) structure which have $100{\times}100\mu\textrm{m}^2$ junction area on $2.5{\times}2.5\textrm{cm}^2$ Si/$SiO_2$(($1000{\AA}$) substrates by an inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using an ICP plasma oxidation method by with various oxidation time from 30 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We found that the oxidized sample for oxidation time of 80 sec showed the highest MR radio of 30.31 %, while the calculated value regarding inhomogeneous current effect indicated 25.18 %. We used transmission electron microscope(TEM) to investigate microstructural evolution of insulating layer. Comparing the cross-sectional TEM images at oxidation time of 150 sec and 360 sec, we found that the thickness and thickness variation of 360 sec-oxidized insulating layer became 30% and 40% larger than those of 150 sec-oxidized layer, repectively. Therefore, our results imply that increase of thickness variation with oxidation time may be one of the major treasons of the MR decrease.

EFFECT OF TWO OPAQUING TECHNIQUES ON METAL-CERAMIC BOND STRENGTH (Opaque 도재의 도포 방법이 치과용 합금과 도재간의 결합 강도에 미치는 영향)

  • Jang, Il-Seong;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.3
    • /
    • pp.475-488
    • /
    • 1996
  • The opaque porcelain layer of porcelain-fused-to-metal(PFM) restoration is critical for the success of PFM restoration because it is the first layer placed over the treated alloy. But, the methods of opaquing technique have not been confirmed. Usually, the one layer method and two layer method have been used for the application of opaque porcelain. In the past, alloys with porcelain veneers which have been used successfully have contained various precious metals. Recent increase in the cost of precious metals stimulates considerable interest in nonprecious alloys. Although nickel-chromium alloys and nickel-chromium-beryllium alloys have been widely used, the use of cobalt-chromium alloys would be gradually increased with elimination of any potential risk of nickel-related allergic responses and/or beryllium-related toxic responses. This investigation examined one- and two-layer opaque porcelain applications to determine the effect on the bond strength of titanium added cobalt-chromium metal ceramic alloy. Bond strength of Ceramco II porcelain to titanium added cobalt-chromium alloy(2Dentitan) and gold-platinum-palladium alloy(Degudent H) were evaluated by direct shear bond strength test with Instron universal testing machine. The results were as follows; 1. When the mean shear bond strength of each experimental group were compared in $0.25cm^2$ unit area, the titanium added cobalt-chromium alloy/two layer method exhibited the greatest strength(79.7kg), followed by titanium added cobalt-chromium alloy/one layer method(76.2kg), gold-platinum-palladium alloy/two layer method(71.4kg), gold-platinum-palladium alloy/one layer method(64.2kg). 2. No significant differences in bond strength were recorded between the two opaquing techniques for gold-platinum-palladium alloy and titanium added cobalt-chromium alloy. 3. No significant differences in bond strength were recorded between the gold-platinum-palladium alloy and the titanium added cobalt-chromium alloy.

  • PDF

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal;Marimuthu, K.;Teresa, P. Evangelin;Almousa, Nouf;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3841-3848
    • /
    • 2022
  • The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.

Effect of rare earth dopants on the radiation shielding properties of barium tellurite glasses

  • Vani, P.;Vinitha, G.;Sayyed, M.I.;AlShammari, Maha M.;Manikandan, N.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.4106-4113
    • /
    • 2021
  • Rare earth doped barium tellurite glasses were synthesised and explored for their radiation shielding applications. All the samples showed good thermal stability with values varying between 101 ℃ and 135 ℃ based on dopants. Structural properties showed the dominance of matrix elements compared to rare earth dopants in forming the bridging and non-bridging atoms in the network. Bandgap values varied between 3.30 and 4.05 eV which was found to be monotonic with respective rare earth dopants indicating their modification effect in the network. Various radiation shielding parameters like linear attenuation coefficient, mean free path and half value layer were calculated and each showed the effect of doping. For all samples, LAC values decreased with increase in energy and is attributed to photoelectric mechanism. Thulium doped glasses showed the highest value of 1.18 cm-1 at 0.245 MeV for 2 mol.% doping, which decreased in the order of erbium, holmium and the base barium tellurite glass, while half value layer and mean free paths showed an opposite trend with least value for 2 mol.% thulium indicating that thulium doped samples are better attenuators compared to undoped and other rare earth doped samples. Studies indicate an increased level of thulium doping in barium tellurite glasses can lead to efficient shielding materials for high energy radiation.

Feasibility study of CdZnTe and CdZnTeSe based high energy X-ray detector using linear accelerator

  • Beomjun Park;Juyoung Ko;Jangwon Byun;Byungdo Park ;Man-Jong Lee ;Jeongho Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2797-2801
    • /
    • 2023
  • CdZnTeSe (CZTS) has attracted attention for applications in X- and gamma-ray detectors owing to its improved properties compared to those of CdZnTe (CZT). In this study, we grew and processed single crystals of CZT and CZTS using the Bridgeman method to confirm the feasibility of using a dosimeter for high-energy X-rays in radiotherapy. We evaluated their linearity and precision using the coefficient of determination (R2) and relative standard deviation (RSD). CZTS showed sufficient RSD values lower than 1.5% of the standard for X-ray dosimetry, whereas CZT's RSD values increased dramatically under some conditions. CZTS exhibited an R2 value of 0.9968 at 500 V/cm, whereas CZT has an R2 value of 0.9373 under the same conditions. The X-ray response of CZTS maintains its pulse shape at various dose rates, and its properties are improved by adding selenium to the CdTe matrix to lower the defect density and sub-grain boundaries. Thus, we validated that CZTS shows a better response than CZT to high-energy X-rays used for radiotherapy. Further, the applicability of an onboard imager, a high-energy X-ray (>6 MV) image, is presented. The proposed methodology and results can guide future advances in X-ray dose detection.

Morphological study of porous aromatic schiff bases as a highly effective carbon dioxide storages

  • Rehab Hammoda;Naser Shaalan;Mohammed H. Al-Mashhadani;Dina S. Ahmed;Rahimi M. Yusop;Ali H. Jawad;Emad Yousif
    • Analytical Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.236-249
    • /
    • 2023
  • Carbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressure on the CO2 adsorption properties of Schiff base complexes. The Schiff bases possessed tiny Brunauer-Emmett-Teller surface areas (4.7-19.4 m2/g), typical pore diameters of 12.8-29.43 nm, and pore volumes ranging from 0.02-0.073 cm3/g. Overall, our results suggest that synthesized complexes have great potential as an effective media for CO2 storage, which could significantly reduce greenhouse gas emissions and contribute to mitigating climate change. The study provides valuable insights into the design of novel materials for CO2 capture and storage, which is a critical area of research for achieving a sustainable future.

Azimuthal Angle Scan Distribution, Third Order Response, and Optical Limiting Threshold of the Bismarck Brown Y:PMMA Film

  • Fadhil Abass Tuma;Hussain Ali Badran;Harith Abdulrazzaq Hasan;Riyadh Chassib Abul-Hail
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.721-731
    • /
    • 2023
  • This paper studies various roughness parameters, besides waviness, texture, and nonlinear parameters of Bismarck brown Y (BBY)-doped Poly(methyl methacrylate) (PMMA) films based on the computed values of optical limiting (OL) threshold power and nonlinear refractive index. The films' morphology, grain size, and absorption spectra were investigated using atomic force microscopy in conjunction with ultraviolet-visible (UV-Vis) spectrophotometer. The particle size of the films ranged between 4.11-4.51 mm and polymer films showed good homogeneity and medium roughness, ranging from 1.11-4.58 mm. A polymer film's third-order nonlinear optical features were carried out using the Z-scan methodology. The measurements were obtained by a continuous wave produced from a solid-state laser with a 532 nm wavelength. According to the results, BBY has a nonlinear refractive index of 10-6 cm2/W that is significantly negative and nonlinear. The optical limiting thresholds are roughly 10.29, 13.52, and 18.71 mW, respectively. The shift of nonlinear optical features with the film's concentration was found throughout the experiment Additionally, we found that the polymer samples have outstanding capabilities for restricting the amount of optical power that may be transmitted through them. We propose that these films have the potential to be used in a wide variety of optoelectronic applications, including optical photodetectors and optical switching.