DOI QR코드

DOI QR Code

Azimuthal Angle Scan Distribution, Third Order Response, and Optical Limiting Threshold of the Bismarck Brown Y:PMMA Film

  • Fadhil Abass Tuma (Department of Physics, Education College for Pure Sciences, University of Basrah) ;
  • Hussain Ali Badran (Department of Physics, Education College for Pure Sciences, University of Basrah) ;
  • Harith Abdulrazzaq Hasan (Department of Physics, Education College for Pure Sciences, University of Basrah) ;
  • Riyadh Chassib Abul-Hail (Department of Physics, Education College for Pure Sciences, University of Basrah)
  • 투고 : 2023.08.04
  • 심사 : 2023.09.11
  • 발행 : 2023.12.25

초록

This paper studies various roughness parameters, besides waviness, texture, and nonlinear parameters of Bismarck brown Y (BBY)-doped Poly(methyl methacrylate) (PMMA) films based on the computed values of optical limiting (OL) threshold power and nonlinear refractive index. The films' morphology, grain size, and absorption spectra were investigated using atomic force microscopy in conjunction with ultraviolet-visible (UV-Vis) spectrophotometer. The particle size of the films ranged between 4.11-4.51 mm and polymer films showed good homogeneity and medium roughness, ranging from 1.11-4.58 mm. A polymer film's third-order nonlinear optical features were carried out using the Z-scan methodology. The measurements were obtained by a continuous wave produced from a solid-state laser with a 532 nm wavelength. According to the results, BBY has a nonlinear refractive index of 10-6 cm2/W that is significantly negative and nonlinear. The optical limiting thresholds are roughly 10.29, 13.52, and 18.71 mW, respectively. The shift of nonlinear optical features with the film's concentration was found throughout the experiment Additionally, we found that the polymer samples have outstanding capabilities for restricting the amount of optical power that may be transmitted through them. We propose that these films have the potential to be used in a wide variety of optoelectronic applications, including optical photodetectors and optical switching.

키워드

과제정보

The authors would like to thank Prof. Falih Hussain Al-Khudair for his assistance, guidance, intellectual support and expertise in LabView programming.

참고문헌

  1. S. R. Marder, W. E. Torruellas, M. B. Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. L. Bredas, J. Li, G. U. Bublitz, and S.G. Boxer, "Large molecular third- order optical nonlinearities in polarized carotenoids," Science 276, 1233-1236 (1997). https://doi.org/10.1126/science.276.5316.1233
  2. J. W. Perry, K. Mansour, I. Y. S. Lee, X. L. Wu, P. V. Bedworth, C. T. Chen, D. Ng, S. R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, "Organic optical limiter with a strong nonlinear absorptive response," Science 273, 1533-1536 (1996). https://doi.org/10.1126/science.273.5281.1533
  3. R. W. Munn and C. N. Ironside, Principles and applications of nonlinear optical materials, Springer Dordrecht, Netherland (1993).
  4. C. Li, L. Zhang, M. Yang, H. Wang, and Y. X. Wang, "Dynamic and steady-state behaviors of reverse saturable absorption in metallophthalocyanine," Phys. Rev. A 49, 1149 (1994).
  5. A. J. Kiran, A. Mithun, B. S. Holla, H. D. Shashikala, G. Umesh, and K. Chandrasekharan, "Nonlinear optical studies of 1-3-diaryl-propenones containing 4-methyl-thiophenyl moieties," Opt. Commun. 269, 235-240 (2007). https://doi.org/10.1016/j.optcom.2006.07.073
  6. R. C. C. Leite, S. P. S. Porto, and T. C. Damen, "The thermal lens effect as a power-limiting device," Appl. Phys. Lett. 10, 100-101 (1976). https://doi.org/10.1063/1.1754849
  7. L. W. Tutt and T. F. Boggess, "A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials," Prog. Quant. Electron. 17, 299-338 (1993). https://doi.org/10.1016/0079-6727(93)90004-S
  8. B. L. Justus, A. L. Huston and A. J. Campillo, "Broadband thermal optical limiter," Appl. Phys. Lett. 63, 1483-1485 (1993). https://doi.org/10.1063/1.109663
  9. L.W. Tutt and A. Kost, "Optical limiting with C60 in poly-methyl methacrylate," Opt. Lett. 18, 334 (1993).
  10. X. B. Sun, Y. L. Wang, Q. Ren, F. J. Zhang, Y. Gao, H. L. Yang, L. Feng, X. Q. Wang, and D. Xu, "Study on nonlinearoptical properties of two novel dmit2-salts by Z-scan technique," Opt. Mater. 29, 1305-1309 (2007). https://doi.org/10.1016/j.optmat.2006.06.004
  11. A. Ronchi, T. Cassano, R. Tommasi, F. Babudri , A. Cardone, G. M. Farinola, and F. Naso, "χ(3) measurements in novel poly(2',5'-dioctyloxy-4,4',4" terphenylenevinylene) using the Z-scan technique," Synth. Met. 139, 831-834 (2003). https://doi.org/10.1016/S0379-6779(03)00274-1
  12. R. W. Boyd, Nonlinear Optics, 1th ed. (Academic Press, London, 1992).
  13. C. Rullie're, Femtosecond Laser Pulses: Principles and Experiments, 1th ed. (Springer Berlin, Germany, 1998).
  14. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, USA, 1995).
  15. T. Hasegawa, T. Nagashima, and N. Sugimoto, "Z-scan study of third-order optical nonlinearities in bismuth-based glasses," Opt. Commun. 250, 411-415 (2005). https://doi.org/10.1016/j.optcom.2005.02.022
  16. R. A. Fisher, Optical Phase Conjunction (Academic Press, USA, 1983).
  17. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Effects in Molecules and Polymers (John Wiley and Sons, USA, 1991).
  18. M. Kyoung and M. Lee, "Nonlinear absorption and refractive index measurements of silver nanorods by nanorods by the Zscan technique," Opt. Commu. 171, 145-148 (1999). https://doi.org/10.1016/S0030-4018(99)00551-9
  19. S. Wu, S. Luo, W. She, D. Luo, and H. Wang, "All-optical switching effects in poly(methyl methacrylate) composites," React. Funct. Polym. 56, 83-88 (2003). https://doi.org/10.1016/S1381-5148(03)00030-0
  20. H. A. Badran, K. A. Aladil, H. G. Lazim, and A. Y. Al-Ahmad, "Thermal blooming and photoluminescence characterizations of sol-gel CdO-SiO2 with different nanocomposite," J. Mater. Sci.: Mater. Electron. 27, 2212-2220 (2016). https://doi.org/10.1007/s10854-015-4013-0
  21. H. A. Badran, H. F. Hussain, and K. I. Ajeel, "Nonlinear characterization of conducting polymer and electrical study for application as solar cells and its antibacterial activity," Optik 127, 5301-5309 (2016). https://doi.org/10.1016/j.ijleo.2016.03.030
  22. H. A. Badran, A. Y. Al-Ahmad, M. F. Al-Mudhaffer, and C. A. Emshary, "Nonlinear optical responses and limiting behavior of sulfadiazine-chromotropic acid azo dye," Opt. Quant. Electron. 46, 1859-1867 (2015).
  23. E. Lidorikis, Q. M. Li, and C. M. Soukoulis, "Optical bistability in colloidal crystals," Phys. Rev. E 55, 3613 (1997).
  24. L. W. Tutt and A. Kost, "Optical limiting performance of C60 and C70 solutions," Nature 356, 225-226 (1992). https://doi.org/10.1038/356225a0
  25. T. Zhang, K. Xi, X. Yu, M. Gu, S. Guo, B. Gu, and H. Wang, "Synthesis, properties of fullerene-containing polyurethane-urea and its optical limiting absorption," Polymer 44, 2647-2554 (2003).
  26. S. L. Guo, B. Gu, and T. Zhang, "Third-order nonlinearities and optical limiting of C60 polyurethane-urea films," J. Nonlinear Opt. Phys. Mater. 13, 45-54 (2004). https://doi.org/10.1142/S0218863504001748
  27. G. D. Torre, P. Vazquez, F. Agullo-Lopez, and T. Torres, "Phthalocyanines and related compounds: Organic targets for nonlinear optical applications," J. Mater. Chem. 8, 1671-1683 (1998). https://doi.org/10.1039/a803533d
  28. I. A.-D. H. Al-Saidi and S. A. Abdulkareem, "Nonlinear optical properties and optical power limiting behavior of Leishman dye in solution and solid polymer film using Z-scan," Optik 126, 4299-4303 (2015). https://doi.org/10.1016/j.ijleo.2015.08.144
  29. S.-L. Guo, T.-P. Li, T.-B. Wang, Z.-S. Liu, and T.-D. Cao, "Third-order nonlinearities and optical limiting properties of complex Co2L3," Opt. Mater. 29, 494-498 (2007). https://doi.org/10.1016/j.optmat.2005.11.006
  30. F. A. Tuma, M. T. Obeed, A. A. Jari, H. A. Badran, and T. A. Alaridhee, "Effect of gamma ray on self-induced diffraction patterns of organic compound Poly (methyl- Methacrylate) films," Results Phys. 52, 106858 (2023).
  31. R. K. F. Alfahed, I. Abdulameer, H. A. Badran, and A. Abdalrahman, "Synthesis, Optical limiting behavior, Thermal blooming and nonlinear studies of dye-doped polymer films," J. Mater. Sci.: Mater. Electron. 31, 13862-13873 (2020). https://doi.org/10.1007/s10854-020-03946-y
  32. H. A. Badran, A. A. Hanan, R. K. F. Alfahed, and A. I. Khalid, "Second-order hyperpolarizability and nonlinear optical properties of novel organic compound-doped poly(O-methoxyaniline) polymer film," J. Mater. Sci.: Mater. Electron. 32, 14623-14641 (2021). https://doi.org/10.1007/s10854-021-06021-2
  33. H. B. Ali, A. Al-Maliki, R. K. F. Alfahed, B. A. Saeed, A. Y. Al-Ahmad, F. A. Al-Saymari, and R. S. Elias, "Synthesis, surface profile, nonlinear reflective index and photophysical properties of curcumin compound," J. Mater. Sci.: Mater. Electron. 29, 10890-10903 (2018). https://doi.org/10.1007/s10854-018-9167-0
  34. R. K. F. Al-Fahed, A. R. Alaa, M. S. Majeed, and H. A. Badran, "Chemical polymerization method to synthesize polyaniline as a novel anode catalyst in microbial fuel cell," Polym. Sci. Series B 63, 773-780 (2021). https://doi.org/10.1134/S1560090421060026
  35. R. D. Conn and H. J. Lillie, Biological stains, 9th ed. (The Williams & Wilkins, USA, 1977).
  36. N. Tomov and N. Dimitrov, "Modified Bismarck brown staining for demonstration of soft tissue mast cells," Trakia J. Sci. 15, 195-197 (2017). https://doi.org/10.15547/tjs.2017.03.001
  37. K. A. AL-Adel and H. A. Badran, "x(3)measurements and optical limiting in Bismarck Brown Y dye," Int. J. Emerg. Technol. Comput. Appl. Sci. 8, 64-68 (2014).
  38. A. M. Kamil, F. H. Abdalrazak, A. F. Halbus, and F. H. Hussein, "Adsorption of Bismarck brown r dye on to multiwall carbon nanotubes," Environm. Anal. Chem. 1, 104 (2014).
  39. K. Enayatzamir, F. Tabandeh, B. Yakhchali, and H. A. Alikhani, and S. R. Couto, "Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes," J. Hazardous Mater. 169, 176-181 (2009). https://doi.org/10.1016/j.jhazmat.2009.03.088
  40. C. Corsaro, G. Neri, A. Santoro, and E. Fazio, "Acrylate and methacrylate polymers' applications: Second life with inexpensive and sustainable recycling approaches," Material 15, 282 (2022).
  41. F. A. Tuma, M. T. Obeed, A. A. Jari, H. A. Badran, and T. A. Alaridhee, "Effect of gamma ray on self-induced diffraction patterns of organic compound Poly (methyl-methacrylate films," Results Phys. 52, 106858 (2023).
  42. M. S. Zafar, "Prosthodontic applications of polymethyl methacrylate (PMMA): An update," Polymer 12, 2299 (2020).
  43. R. M. Abdullah, H. A. Badran, and R. Ch. Abul-Hail, "Electrical, thermal lens and optical study of fluorescein film for application as organic photovoltaic devices," J. Fluores. (2023).
  44. C. M. Muiva, T. S. Sathiaraj, and J. M. Mwabora, "Chemical bond approach to optical properties of some flash evaporated Se100-XSbX chalcogenide alloys," Eur. Phys. J. Appl. Phys. 59, 10301 (2012).
  45. J. Bicerano and S. R. Ovshinsky, "Chemical bond approach to the structures of chalcogenide glasses with reversible switching properties," J. Non-Crystal. Solids 74, 75-84 (1985). https://doi.org/10.1016/0022-3093(85)90402-8
  46. S. A. Khan, F. S. Al-Hazmi, S. Al-Heniti, A. S. Faidah, and A. A. Al-Ghamdi, "Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se-S-Cd thin films," Curr. Appl. Phys. 10, 145-152 (2010). https://doi.org/10.1016/j.cap.2009.05.010
  47. E. S. Gadelmawla, M. M. Koura, T. M. A. Maksoud, I. M. Elewa, and H. H. Soliman, "Roughness parameters," J. Mater. Process. Technol. 123, 133-145 (2002). https://doi.org/10.1016/S0924-0136(02)00060-2
  48. N. Misdan, W. Lau, A. Ismail, T. Matsuura, and D. Rana, "Study on the thin film composite poly (piperazine- amide) nanofiltration membrane: Impacts of physicochemical properties of substrate on interfacial polymerization formation," Desalination 344, 198-205 (2014). https://doi.org/10.1016/j.desal.2014.03.036
  49. V. Shrotriya and Y. Yang, "Capacitance-voltage characterization of polymer light-emitting diodes," J. Appl. Phys. 97, 054504 (2005).
  50. H. A. Al-Hazam, R. K. F. Al-fahad, A. Imran, H. A. Badran, H. S. Shaker, A. Alsalihi, and K. I. Ajeel, "Preparation and optoelectronic studies of the organic compound [2-(2,3-dimethyl phenylamino)-N-Phenyl benzamide doped(PMMA)]," J. Mater. Sci.: Mater. Electron. 30, 10284-10292 (2019). https://doi.org/10.1007/s10854-019-01365-2
  51. H. A. Badran, "Z-scan measurement for the thermo-optic coefficient and transmitted beam profile of 1.8-dihydroxynaphthalin- 3, 6 (disulfonic acid-[2-(4-azo)]-N-5-methyl-3-isoxazolyl)-benzene Sulfonamide," Adv. Phys. Theor. Appl. 26, 36-44 (2013).
  52. H. A. Badran, K. I. Ajeel, and H. G. Lazim, "Effect of nano particle sizes on the third-order optical nonlinearities and nanostructure of copolymer P3HT:BCPM thin film for organic photovoltaics," Mater. Res. Bulletin 76, 422-430 (2016). https://doi.org/10.1016/j.materresbull.2016.01.005
  53. K. A. Al-Adel and H. A. Badran, "Nonlinear optical properties and diffraction ring patterns of benzo congo red," Eup J. Appl. Eng. Sci. Res. 1, 66-72 (2012).
  54. R. K. F. Alfahed, A. Imran, M. S. Majeed, and H. A. Badran, "Photoluminescence characterizations and nonlinear optical of PM-355 nuclear track detector film by alpha-particles and laser irradiation," Phys. Scr. 95, 075709 (2020).
  55. R. K. F. Alfahed, A. S. Al Asadi, H. A. Badran, and K. I. Ajeel, "Structural, morphological, and Z-scan technique for a temperature-controllable chemical reaction synthesis of zinc sulfide nanoparticles," Appl. Phys. B 125, 48 (2019).
  56. R. K. F. Alfahed, H. A. Badran, A. T. Y. Abbas, and N. A.-H. Saleh, "Investigation of third order nonlinearity of Ethidium bromide doped deoxyribonucleic acid (DNA)," J. Phys.: Conf. Ser. 1963, 012136 (2021).
  57. H. A. Badran, A. T. Y. Abbas, and R.K.F Alfahed, "Study the effect of concentration on the evolution of far field diffraction patterns of bromocresol purple and congo red solution," J. Phys.: Conf. Ser. 1963, 012013 (2021).
  58. A. A. Hussain, A. I. Musa, R. K. F. Alfahed, and H. A. Badran, "Diffracting samples, Nonlinear optical properties and morphology for (2- hydroxyphenyl) [2-(2-methoxybenzylideneamino)-5-methylphenyl] telluride film," AIP Conf. Proc. 2290, 050049 (2020).
  59. A. Al-Salihi, R. D. Salim, R. K. F. Alfahed, and H. A. Badran, "Effect of solar radiation induced and alpha particles on nonlinear behavior of PM-355 film," IOP Conf. Ser.: Mater. Sci. Eng. 928, 072056 (2020). https://doi.org/10.1088/1757-899X/928/7/072056
  60. H. A. Badran, A. A. Al-Fregi, R. K. F. Alfahed, and A. S. Al-Asadi, "Study of thermal lens technique and third- order nonlinear susceptibility of PMMA base containing 5', 5''dibromo-o-cresolsulfothalein," J. Mater. Sci.: Mater. Electron. 28, 17288-17296 (2017). https://doi.org/10.1007/s10854-017-7661-4