• Title/Summary/Keyword: Variational data assimilation

Search Result 26, Processing Time 0.02 seconds

Global Ocean Data Assimilation and Prediction System in KMA: Description and Assessment (기상청 전지구 해양자료동화시스템(GODAPS): 개요 및 검증)

  • Chang, Pil-Hun;Hwang, Seung-On;Choo, Sung-Ho;Lee, Johan;Lee, Sang-Min;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.229-240
    • /
    • 2021
  • The Global Ocean Data Assimilation and Prediction System (GODAPS) in operation at the KMA (Korea Meteorological Administration) is introduced. GODAPS consists of ocean model, ice model, and 3-d variational ocean data assimilation system. GODAPS assimilates conventional and satellite observations for sea surface temperature and height, observations of sea-ice concentration, as well as temperature and salinity profiles for the ocean using a 24-hour data assimilation window. It finally produces ocean analysis fields with a resolution of 0.25 ORCA (tripolar) grid and 75-layer in depth. This analysis is used for providing a boundary condition for the atmospheric model of the KMA Global Seasonal Forecasting System version 5 (GloSea5) in addition to monitoring on the global ocean and ice. For the purpose of evaluating the quality of ocean analysis produced by GODAPS, a one-year data assimilation experiment was performed. Assimilation of global observing system in GODAPS results in producing improved analysis and forecast fields with reduced error in terms of RMSE of innovation and analysis increment. In addition, comparison with an unassimilated experiment shows a mostly positive impact, especially over the region with large oceanic variability.

A Study of Iterative QC-BC Method for AMSU-A in the KIAPS Data Assimilation System (KIAPS 자료동화 시스템에서 AMSU-A의 품질검사 및 편향보정 반복기법에 관한 연구)

  • Jeong, Han-Byeol;Chun, Hyoung-Wook;Lee, Sihye
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.241-255
    • /
    • 2019
  • Bias correction (BC) and quality control (QC) are essential steps for the proper use of satellite observations in data assimilation (DA) system. BC should be calculated over quality controlled observation. And also QC should be performed for bias corrected observation. In the Korea Institute of Atmospheric Prediction Systems (KIAPS) Package for Observation Processing (KPOP), we adopted an adaptive BC method that calculates the BC coefficients with background at the analysis time rather than using static BC coefficients. In this study, we have developed an iterative QC-BC method for Advanced Microwave Sounding Unit-A (AMSU-A) to reduce the negative feedback from the interaction between BC and QC. The new iterative QC-BC is evaluated in the KIAPS 3-dimensional variational (3DVAR) DA cycle for January 2016. The iterative QC-BC method for AMSU-A shows globally significant benefits for error reduction of the temperature. The positive impacts for the temperature were predominant at latitudes of $30^{\circ}{\sim}90^{\circ}$ of both hemispheres. Moreover, the background warm bias across the troposphere is decreased. Even though AMSU-A is mainly designed for atmospheric temperature sounding, the improvement of AMSU-A pre-processing module has a positive impact on the wind component over latitudes of $30^{\circ}S$ near upper-troposphere, respectively. Consequently, the 3-day-forecast-accuracy is improved about 1% for temperature and zonal wind in the troposphere.

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.

Seasonal and Interannual Variability of the North Korean Cold Current in the East Sea Reanalysis Data (동해 재분석 자료에 나타난 북한한류의 계절 및 경년변동성)

  • Kim, Young-Ho;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • Analyzing the results of East Sea Regional Ocean Model using a 3-dimensional variational data assimilation scheme, we investigated spatial and temporal variability of the North Korean Cold Current (NKCC) in the East Sea. The climatological monthly mean transport of the NKCC clearly shows seasonal variation of the NKCC within the range of about 0.35 Sv ($=0^6m^3/s$), which increases from its minimum (about 0.45 Sv) through December-January to March, decreases during March and May, and then increases again to the maximum (about 0.8 Sv) in August-September. The volume transport of the NKCC shows interannual variation of the NKCC with the range of about 1.0 Sv that is larger than seasonal variation. The southward current of the NKCC appears often not only in summer but in winter as well. The width of the NKCC is about 35 km near the Korean coast and its core is located under the East Korea Warm Current. The North Korean Cold Water (NKCW), characterized by low salinity and low temperature, is located both under the Tsushima Warm Water and in the western side of the maximum southward current of the NKCC that means the NKCC advects the NKCW southward along the Korean coast. It is revealed that the intermediate low salinity water, formed off the Vladivostok in winter, flows southward to the south of $37^{\circ}N$ through $2{\sim}3$ paths; one path along the Korean coast, another one along $132^{\circ}E$, and the middle path along $130^{\circ}E$. The path of the intermediate low salinity varies with years. The reanalysis fields suggest that the NKCW is advected through the paths along the Korean coast and along $130^{\circ}E$.

Comparison of Ensemble Perturbations using Lorenz-95 Model: Bred vectors, Orthogonal Bred vectors and Ensemble Transform Kalman Filter(ETKF) (로렌쯔-95 모델을 이용한 앙상블 섭동 비교: 브레드벡터, 직교 브레드벡터와 앙상블 칼만 필터)

  • Chung, Kwan-Young;Barker, Dale;Moon, Sun-Ok;Jeon, Eun-Hee;Lee, Hee-Sang
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.217-230
    • /
    • 2007
  • Using the Lorenz-95 simple model, which can simulate many atmospheric characteristics, we compare the performance of ensemble strategies such as bred vectors, the bred vectors rotated (to be orthogonal to each bred member), and the Ensemble Transform Kalman Filter (ETKF). The performance metrics used are the RMSE of ensemble means, the ratio of RMS error of ensemble mean to the spread of ensemble, rank histograms to see if the ensemble member can well represent the true probability density function (pdf), and the distribution of eigen-values of the forecast ensemble, which can provide useful information on the independence of each member. In the meantime, the orthogonal bred vectors can achieve the considerable progress comparing the bred vectors in all aspects of RMSE, spread, and independence of members. When we rotate the bred vectors for orthogonalization, the improvement rate for the spread of ensemble is almost as double as that for RMS error of ensemble mean compared to the non-rotated bred vectors on a simple model. It appears that the result is consistent with the tentative test on the operational model in KMA. In conclusion, ETKF is superior to the other two methods in all terms of the assesment ways we used when it comes to ensemble prediction. But we cannot decide which perturbation strategy is better in aspect of the structure of the background error covariance. It appears that further studies on the best perturbation way for hybrid variational data assimilation to consider an error-of-the-day(EOTD) should be needed.

Analysis of Forecast Performance by Altered Conventional Observation Set (종관 관측 자료 변화에 따른 예보 성능 분석)

  • Han, Hyun-Jun;Kwon, In-Hyuk;Kang, Jeon-Ho;Chun, Hyoung-Wook;Lee, Sihye;Lim, Sujeong;Kim, Taehun
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.21-39
    • /
    • 2019
  • The conventional observations of the Korea Meteorological Administration (KMA) and National Centers for Environmental Prediction (NCEP) are compared in the numerical weather forecast system at the Korea Institute of Atmospheric Prediction Systems (KIAPS). The weather forecasting system used in this study is consists of Korea Integrated Model (KIM) as a global numerical weather prediction model, three-dimensional variational method as a data assimilation system, and KIAPS Package for Observation Processing (KPOP) as an observation pre-processing system. As a result, the forecast performance of NCEP observation was better while the number of observation is similar to the KMA observation. In addition, the sensitivity of forecast performance was investigated for each SONDE, SURFACE and AIRCRAFT observations. The differences in AIRCRAFT observation were not sensitive to forecast, but the use of NCEP SONDE and SURFACE observations have shown better forecast performance. It is found that the NCEP observations have more wind observations of the SONDE in the upper atmosphere and more surface pressure observations of the SURFACE in the ocean. The results suggest that evenly distributed observations can lead to improved forecast performance.