• 제목/요약/키워드: Variants

검색결과 1,503건 처리시간 0.037초

Structure Based Protein Engineering of Aldehyde Dehydrogenase from Azospirillum brasilense to Enhance Enzyme Activity against Unnatural 3-Hydroxypropionaldehyde

  • Son, Hyeoncheol Francis;Kim, Kyung-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권2호
    • /
    • pp.170-175
    • /
    • 2022
  • 3-Hydroxypropionic acid (3HP) is a platform chemical and can be converted into other valuable C3-based chemicals. Because a large amount of glycerol is produced as a by-product in the biodiesel industry, glycerol is an attractive carbon source in the biological production of 3HP. Although eight 3HP-producing aldehyde dehydrogenases (ALDHs) have been reported so far, the low conversion rate from 3-hydroxypropionaldehyde (3HPA) to 3HP using these enzymes is still a bottleneck for the production of 3HP. In this study, we elucidated the substrate binding modes of the eight 3HP-producing ALDHs through bioinformatic and structural analysis of these enzymes and selected protein engineering targets for developing enzymes with enhanced enzymatic activity against 3HPA. Among ten AbKGSADH variants we tested, three variants with replacement at the Arg281 site of AbKGSADH showed enhanced enzymatic activities. In particular, the AbKGSADHR281Y variant exhibited improved catalytic efficiency by 2.5-fold compared with the wild type.

A rare, likely pathogenic GCK variant related to maturity-onset diabetes of the young type 2: A case report

  • So, Min-Kyung;Huh, Jungwon;Kim, Hae Soon
    • Journal of Genetic Medicine
    • /
    • 제18권2호
    • /
    • pp.132-136
    • /
    • 2021
  • Maturity-onset diabetes of the young (MODY) is caused by autosomal dominant pathogenic variants in one of 14 currently known monogenic genes. Characteristics of patients with MODY include early-onset clinical disease with a family history of diabetes and negative autoantibodies and may present with heterogeneous phenotypes according to the different subtypes. Here, we report a patient with early-onset diabetes who presented asymptomatic mild fasting hyperglycemia with the absence of autoantibodies. She was diagnosed with glucokinase (GCK)-MODY caused by a GCK variant, c.1289T>C (p.L430P), identified by targeted gene-panel testing, and the affected father had the same variant. We interpreted this rare missense variant as a likely pathogenic variant and then she stopped taking oral medication. This case highlights the usefulness of gene-panel testing for accurate diagnosis and appropriate management of MODY. We also note the importance of familial genetic testing and genetic counseling for the proper interpretation of MODY variants.

La Variación de /ɾ/ en Posición Posnuclear en el Español Andino del Perú

  • Kim, Kyoung-Lai
    • 이베로아메리카
    • /
    • 제21권1호
    • /
    • pp.127-158
    • /
    • 2019
  • In this paper, the variation in coda /ɾ/ is analyzed in the Spanish of the Tupe district in Peru. The work was carried out on the corpus of 24 semi-structured interviews. Four variants of /-ɾ/ were distinguished and 1920 tokens were analyzed. Praat was used to recognize and describe the variants and two statistical analysis were carried out: descriptive analysis and probabilistic analysis using the statistical program Goldvarb X. The results obtained from the analysis show that the assibilated variant is favored in the prepausal position and before homorganic consonants. The frequency of occurrence was very low before other consonants. Regarding the social factor that contributes to the assimilated variant, the young and middle-aged men (from 20 to 60), those who did not live more than a year on the Peruvian coast and male speakers favor it.

PyOncoPrint: a python package for plotting OncoPrints

  • Jeongbin Park;Nagarajan Paramasivam
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.14.1-14.4
    • /
    • 2023
  • OncoPrint, the plot to visualize an overview of genetic variants in sequencing data, has been widely used in the field of cancer genomics. However, still, there have been no Python libraries capable to generate OncoPrint yet, a big hassle to plot OncoPrints within Python-based genetic variants analysis pipelines. This paper introduces a new Python package PyOncoPrint, which can be easily used to plot OncoPrints in Python. The package is based on the existing widely used scientific plotting library Matplotlib, the resulting plots are easy to be adjusted for various needs.