• Title/Summary/Keyword: Variance of Analysis

Search Result 6,248, Processing Time 0.038 seconds

An Analysis of Structural Relationship Among the Attitude Toward Science, Science Motivation, Self-Regulated Learning Strategy, and Science Achievement in Middle School Students (중학생의 과학에 대한 태도, 과학 학습 동기 및 자기조절학습 전략과 과학 학업성취도의 구조적 관계 분석)

  • Lee, Jungsoo;Chung, Younglan
    • Journal of The Korean Association For Science Education
    • /
    • v.34 no.5
    • /
    • pp.491-497
    • /
    • 2014
  • The purpose of this study is to investigate the structural relationships among the attitude toward science and science motivation such as affective characteristics, and self-regulated learning strategy such as cognitive factor of science achievement. 853 middle school students residing in Seoul completed questionnaires about attitude toward science, science motivation, and self-regulated learning strategy. The sample variance-covariance matrix was analysed using AMOS 20.0, and a maximum likelihood minimization function. The results are as follows: First, attitude toward science, science motivation and self-regulated learning strategy of middle school students were all found to have a significant direct effect on science achievement. Second, attitude toward science and science motivation in middle school students has a direct effect on the self-regulated learning strategy. Third, attitude toward science in middle school students has a substantial indirect effect on science achievement mediated by their self-regulated learning strategy. Forth, science motivation in middle school students has indirect effect on science achievement mediated by their self-regulated learning strategy. Therefore, in order to improve science achievement among middle school students, teachers should consider synthetically the affective characteristics such as attitude toward science and science motivation, and cognitive factor such as self-regulated learning strategy.

The Relationship Between Elementary School Students' Family Health and Internet Addiction: School Adjustment as a Mediating Variable (초등학생의 가족건강성과 인터넷 중독 간의 관계 : 학교적응을 매개변인으로)

  • Jang, Sung-Hwa;Park, Young-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.7
    • /
    • pp.463-472
    • /
    • 2013
  • The purpose of this study is to examine the relationships among three factors such as the family health, school adjustment and internet addiction, and their subordinated factors. The research is going to clarify if school adjustment has mediating effect in the relationship between the family health and internet addiction. 371 of elementary school students resideing in Dadjeon-city completed questionnaires assessing family health, school adjustment and internet addiction. The sample variance-covariance matrix was analyzed using SPSS 18.0 and AMOS 20.0, the mazimum likelihood minimization function. The goodness of fit was evaluated using the SRMR, RMSEA and its 90% confidence interval, CFI, and TLI. The results are as follows: First, there were significant correlations among family health, school adjustment and internet addiction. Second, the subordinated factors in the family health, school adjustment, and internet addiction regulation are also closely related in the statistically significant positive relationship excepting school adjustment. After conducting the Covariance Structure Analysis to verify the mediating effect of school adjustment in the relationship between the family health and internet addiction, we found that it was appropriate to explain our findings with the structural equation model. when the family health has an effect on internet addiction, the school adjustment partially influences this process. Finally, educational implications and suggestions for future studies are addressed.

The Impacts of Stress and Academic Engagement on Resilience in Nursing Students (간호대학생의 스트레스와 학업열의가 극복력에 미치는 영향)

  • Lee, Sang-min;Jo, Ho-Jin;Im, Min-suk
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.390-399
    • /
    • 2022
  • Purpose: This study was conducted to identify the factors affecting nursing students' resilience. Methods: The subjects were 192 nursing students from a college in G city. Data were collected from september 23 to 26, 2019 and analyzed using SPSS 22.0 and descriptive statistics, t-test, ANOVA, Sheffé test, Pearson's correlation coefficients, and multiple regression. Results: Resilience showed a statistically significant difference according to gender, grade, personal relation, motive for application, major satisfaction, grade point in general characteristics. Academic engagement and resilience showed apparent positive correlation (r=.37, p<.001), stress and resilience showed weak negative correlation (r=-.23, p=.001). In multiple regression analysis, the most affecting factor was the academic engagement (𝛽=.24), poor of subjective health status (𝛽=-.21), female (𝛽=-.19), junior of grade (𝛽=.13). These variables explained 33.0% of the total variance in resilience. Conclusion: To strengthen resilience in nursing students, learning atmosphere creation through intrinsic motivation in the regular class. Also, a variable academic engagement program should be provided to be able to positive thinking about academic study and achievement.

Factors Influencing Hospital Nurses' Turnover Intention: A Cross-sectional Survey (간호사의 이직의도 영향요인)

  • Yeun, Eun-Ja;Kwon, Young-Mi;Je, Mi-Soon;An, Jeong-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.94-106
    • /
    • 2016
  • Purpose: This study was to identify internal marketing, nursing professionalism, emotional exhaustion, personal accomplishment that influence turnover intention among hospital nurses and to predict in turnover intention. Methods: A cross-sectional sample of 270 hospital nurses from 2 university hospitals in Seoul and Chungbuk, South Korea. The data were collected from May to June, 2013 and using analyzed with t-test, ANOVA and stepwise multiple regression by using SPSS 19.0 program. Results: The mean score for nurse turnover was $3.91{\pm}0.53$, internal marketing $2.58{\pm}0.48$, nursing professionalism $3.30{\pm}0.64$, emotional exhaustion $3.23{\pm}0.64$, and personal accomplishment $3.24{\pm}0.41$. The significant factors of turnover intention were emotional exhaustion, internal marketing, nursing professionalism, work unit, nurse position, and education. And these factors explained 25.1% of the variance in turnover intention. Conclusion: The results from this study indicated a need to develop the intervention program to prevent turnover intention. These findings establish a baseline that will lead to further research.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

A Study on Diversification Effect of Investment Portfolio with Non-financial Asset - Based on Music Royalties Fractional Investment (비금융자산이 편입된 포트폴리오의 분산효과에 대한 연구 - 음악저작권 조각투자를 중심으로)

  • Chung, Inyoung;Lee, Won-Boo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.691-702
    • /
    • 2022
  • This study verifies the diversification effect when non-financial asset such as fractional music royalties investment which is recently get interest from masses, is included in traditional global asset allocation portfolio. From Jan 2019 when Music Royalties index is announced to Jun 2022, compared traditional global asset allocation portfolio and the portfolio included with music royalties. To eliminate the enhancement effect from portfolio strategy itself rather than including non-financial asset, used the four basic portfolio strategy such as buy & hold, constant rebalanced, mean variance, risk parity. As a result, all the portfolios included with music royalties shows less risk with higher returns. This means the sharpe ratio has enhanced and that results the portfolio diversification effect is placed. The empirical analysis of the study found academic significance in that the portfolio included with music royalties investment has diversification effect, and show the possibilities the not only on the music royalties, other non-financial asset can be shown the portfolio diversification effect.

A Data-based Sales Forecasting Support System for New Businesses (데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로)

  • Jun, Seung-Pyo;Sung, Tae-Eung;Choi, San
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • Analysis of future business or investment opportunities, such as business feasibility analysis and company or technology valuation, necessitate objective estimation on the relevant market and expected sales. While there are various ways to classify the estimation methods of these new sales or market size, they can be broadly divided into top-down and bottom-up approaches by benchmark references. Both methods, however, require a lot of resources and time. Therefore, we propose a data-based intelligent demand forecasting system to support evaluation of new business. This study focuses on analogical forecasting, one of the traditional quantitative forecasting methods, to develop sales forecasting intelligence systems for new businesses. Instead of simply estimating sales for a few years, we hereby propose a method of estimating the sales of new businesses by using the initial sales and the sales growth rate of similar companies. To demonstrate the appropriateness of this method, it is examined whether the sales performance of recently established companies in the same industry category in Korea can be utilized as a reference variable for the analogical forecasting. In this study, we examined whether the phenomenon of "mean reversion" was observed in the sales of start-up companies in order to identify errors in estimating sales of new businesses based on industry sales growth rate and whether the differences in business environment resulting from the different timing of business launch affects growth rate. We also conducted analyses of variance (ANOVA) and latent growth model (LGM) to identify differences in sales growth rates by industry category. Based on the results, we proposed industry-specific range and linear forecasting models. This study analyzed the sales of only 150,000 start-up companies in Korea in the last 10 years, and identified that the average growth rate of start-ups in Korea is higher than the industry average in the first few years, but it shortly shows the phenomenon of mean-reversion. In addition, although the start-up founding juncture affects the sales growth rate, it is not high significantly and the sales growth rate can be different according to the industry classification. Utilizing both this phenomenon and the performance of start-up companies in relevant industries, we have proposed two models of new business sales based on the sales growth rate. The method proposed in this study makes it possible to objectively and quickly estimate the sales of new business by industry, and it is expected to provide reference information to judge whether sales estimated by other methods (top-down/bottom-up approach) pass the bounds from ordinary cases in relevant industry. In particular, the results of this study can be practically used as useful reference information for business feasibility analysis or technical valuation for entering new business. When using the existing top-down method, it can be used to set the range of market size or market share. As well, when using the bottom-up method, the estimation period may be set in accordance of the mean reverting period information for the growth rate. The two models proposed in this study will enable rapid and objective sales estimation of new businesses, and are expected to improve the efficiency of business feasibility analysis and technology valuation process by developing intelligent information system. In academic perspectives, it is a very important discovery that the phenomenon of 'mean reversion' is found among start-up companies out of general small-and-medium enterprises (SMEs) as well as stable companies such as listed companies. In particular, there exists the significance of this study in that over the large-scale data the mean reverting phenomenon of the start-up firms' sales growth rate is different from that of the listed companies, and that there is a difference in each industry. If a linear model, which is useful for estimating the sales of a specific company, is highly likely to be utilized in practical aspects, it can be explained that the range model, which can be used for the estimation method of the sales of the unspecified firms, is highly likely to be used in political aspects. It implies that when analyzing the business activities and performance of a specific industry group or enterprise group there is political usability in that the range model enables to provide references and compare them by data based start-up sales forecasting system.

The Relations between Financial Constraints and Dividend Smoothing of Innovative Small and Medium Sized Enterprises (혁신형 중소기업의 재무적 제약과 배당스무딩간의 관계)

  • Shin, Min-Shik;Kim, Soo-Eun
    • Korean small business review
    • /
    • v.31 no.4
    • /
    • pp.67-93
    • /
    • 2009
  • The purpose of this paper is to explore the relations between financial constraints and dividend smoothing of innovative small and medium sized enterprises(SMEs) listed on Korea Securities Market and Kosdaq Market of Korea Exchange. The innovative SMEs is defined as the firms with high level of R&D intensity which is measured by (R&D investment/total sales) ratio, according to Chauvin and Hirschey (1993). The R&D investment plays an important role as the innovative driver that can increase the future growth opportunity and profitability of the firms. Therefore, the R&D investment have large, positive, and consistent influences on the market value of the firm. In this point of view, we expect that the innovative SMEs can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. And also, we expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Aivazian et al.(2006) exert that the financial unconstrained firms with the high accessibility to capital market can adjust dividend payment faster than the financial constrained firms. We collect the sample firms among the total SMEs listed on Korea Securities Market and Kosdaq Market of Korea Exchange during the periods from January 1999 to December 2007 from the KIS Value Library database. The total number of firm-year observations of the total sample firms throughout the entire period is 5,544, the number of firm-year observations of the dividend firms is 2,919, and the number of firm-year observations of the non-dividend firms is 2,625. About 53%(or 2,919) of these total 5,544 observations involve firms that make a dividend payment. The dividend firms are divided into two groups according to the R&D intensity, such as the innovative SMEs with larger than median of R&D intensity and the noninnovative SMEs with smaller than median of R&D intensity. The number of firm-year observations of the innovative SMEs is 1,506, and the number of firm-year observations of the noninnovative SMEs is 1,413. Furthermore, the innovative SMEs are divided into two groups according to level of financial constraints, such as the financial unconstrained firms and the financial constrained firms. The number of firm-year observations of the former is 894, and the number of firm-year observations of the latter is 612. Although all available firm-year observations of the dividend firms are collected, deletions are made in the case of financial industries such as banks, securities company, insurance company, and other financial services company, because their capital structure and business style are widely different from the general manufacturing firms. The stock repurchase was involved in dividend payment because Grullon and Michaely (2002) examined the substitution hypothesis between dividends and stock repurchases. However, our data structure is an unbalanced panel data since there is no requirement that the firm-year observations data are all available for each firms during the entire periods from January 1999 to December 2007 from the KIS Value Library database. We firstly estimate the classic Lintner(1956) dividend adjustment model, where the decision to smooth dividend or to adopt a residual dividend policy depends on financial constraints measured by market accessibility. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between current payout rato and target payout ratio each year. In the Lintner model, dependent variable is the current dividend per share(DPSt), and independent variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt). We hypothesized that firms adjust partially the gap between the current dividend per share(DPSt) and the target payout ratio(Ω) each year, when the past dividend per share(DPSt-1) deviate from the target payout ratio(Ω). We secondly estimate the expansion model that extend the Lintner model by including the determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory. In the expansion model, dependent variable is the current dividend per share(DPSt), explanatory variables are the past dividend per share(DPSt-1) and the current earnings per share(EPSt), and control variables are the current capital expenditure ratio(CEAt), the current leverage ratio(LEVt), the current operating return on assets(ROAt), the current business risk(RISKt), the current trading volume turnover ratio(TURNt), and the current dividend premium(DPREMt). In these control variables, CEAt, LEVt, and ROAt are the determinants suggested by the residual dividend theory and the agency theory, ROAt and RISKt are the determinants suggested by the dividend signaling theory, TURNt is the determinant suggested by the transactions cost theory, and DPREMt is the determinant suggested by the catering theory. Furthermore, we thirdly estimate the Lintner model and the expansion model by using the panel data of the financial unconstrained firms and the financial constrained firms, that are divided into two groups according to level of financial constraints. We expect that the financial unconstrained firms can adjust dividend payment faster than the financial constrained firms, because the former can finance more easily the investment funds through the market accessibility than the latter. We analyzed descriptive statistics such as mean, standard deviation, and median to delete the outliers from the panel data, conducted one way analysis of variance to check up the industry-specfic effects, and conducted difference test of firms characteristic variables between innovative SMEs and noninnovative SMEs as well as difference test of firms characteristic variables between financial unconstrained firms and financial constrained firms. We also conducted the correlation analysis and the variance inflation factors analysis to detect any multicollinearity among the independent variables. Both of the correlation coefficients and the variance inflation factors are roughly low to the extent that may be ignored the multicollinearity among the independent variables. Furthermore, we estimate both of the Lintner model and the expansion model using the panel regression analysis. We firstly test the time-specific effects and the firm-specific effects may be involved in our panel data through the Lagrange multiplier test that was proposed by Breusch and Pagan(1980), and secondly conduct Hausman test to prove that fixed effect model is fitter with our panel data than the random effect model. The main results of this study can be summarized as follows. The determinants suggested by the major theories of dividend, namely, residual dividend theory, dividend signaling theory, agency theory, catering theory, and transactions cost theory explain significantly the dividend policy of the innovative SMEs. Lintner model indicates that firms maintain stable and long run target payout ratio, and that firms adjust partially the gap between the current payout ratio and the target payout ratio each year. In the core variables of Lintner model, the past dividend per share has more effects to dividend smoothing than the current earnings per share. These results suggest that the innovative SMEs maintain stable and long run dividend policy which sustains the past dividend per share level without corporate special reasons. The main results show that dividend adjustment speed of the innovative SMEs is faster than that of the noninnovative SMEs. This means that the innovative SMEs with high level of R&D intensity can adjust dividend payment faster than the noninnovative SMEs, on the ground of their future growth opportunity and profitability. The other main results show that dividend adjustment speed of the financial unconstrained SMEs is faster than that of the financial constrained SMEs. This means that the financial unconstrained firms with high accessibility to capital market can adjust dividend payment faster than the financial constrained firms, on the ground of their financing ability of investment funds through the market accessibility. Futhermore, the other additional results show that dividend adjustment speed of the innovative SMEs classified by the Small and Medium Business Administration is faster than that of the unclassified SMEs. They are linked with various financial policies and services such as credit guaranteed service, policy fund for SMEs, venture investment fund, insurance program, and so on. In conclusion, the past dividend per share and the current earnings per share suggested by the Lintner model explain mainly dividend adjustment speed of the innovative SMEs, and also the financial constraints explain partially. Therefore, if managers can properly understand of the relations between financial constraints and dividend smoothing of innovative SMEs, they can maintain stable and long run dividend policy of the innovative SMEs through dividend smoothing. These are encouraging results for Korea government, that is, the Small and Medium Business Administration as it has implemented many policies to commit to the innovative SMEs. This paper may have a few limitations because it may be only early study about the relations between financial constraints and dividend smoothing of the innovative SMEs. Specifically, this paper may not adequately capture all of the subtle features of the innovative SMEs and the financial unconstrained SMEs. Therefore, we think that it is necessary to expand sample firms and control variables, and use more elaborate analysis methods in the future studies.

Consumer Responses to Retailer's Location-based Mobile Shopping Service : Focusing on PAD Emotional State Model and Information Relevance (유통업체의 위치기반 모바일 쇼핑서비스 제공에 대한 소비자 반응 : PAD 감정모델과 정보의 상황관련성을 중심으로)

  • Lee, Hyun-Hwa;Moon, Hee-Kang
    • Journal of Distribution Research
    • /
    • v.17 no.2
    • /
    • pp.63-92
    • /
    • 2012
  • This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model in the present study as a conceptual framework. The results of an online survey of 335 mobile phone users in the U.S. indicated the positive effects of arousal and information relevancy on pleasure. In addition, there was a significant relationship between pleasure and intention to use a LBMSS. However, the relationship between dominance and pleasure was not statistically significant. The results of the present study provides insight to retailers and marketers as to what factors they need to consider to implement location-based mobile shopping services to improve their business performance. Extended Abstract : Location aware technology has expanded the marketer's reach by reducing space and time between a consumer's receipt of advertising and purchase, offering real-time information and coupons to consumers in purchasing situations (Dickenger and Kleijnen, 2008; Malhotra and Malhotra, 2009). LBMSS increases the relevancy of SMS marketing by linking advertisements to a user's location (Bamba and Barnes, 2007; Malhotra and Malhotra, 2009). This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective response. The purpose of the study was to examine the relationship among information relevancy and affective variables and their effects on intention to use LBMSS. Thus, information relevancy was integrated into pleasure-arousal-dominance (PAD) model and generated the following hypotheses. Hypothesis 1. There will be a positive influence of arousal concerning LBMSS on pleasure in regard to LBMSS. Hypothesis 2. There will be a positive influence of dominance in LBMSS on pleasure in regard to LBMSS. Hypothesis 3. There will be a positive influence of information relevancy on pleasure in regard to LBMSS. Hypothesis 4. There will be a positive influence of pleasure about LBMSS on intention to use LBMSS. E-mail invitations were sent out to a randomly selected sample of three thousand consumers who are older than 18 years old and mobile phone owners, acquired from an independent marketing research company. An online survey technique was employed utilizing Dillman's (2000) online survey method and follow-ups. A total of 335 valid responses were used for the data analysis in the present study. Before the respondents answer any of the questions, they were told to read a document describing LBMSS. The document included definitions and examples of LBMSS provided by various service providers. After that, they were exposed to a scenario describing the participant as taking a saturday shopping trip to a mall and then receiving a short message from the mall. The short message included new product information and coupons for same day use at participating stores. They then completed a questionnaire containing various questions. To assess arousal, dominance, and pleasure, we adapted and modified scales used in the previous studies in the context of location-based mobile shopping service, each of the five items from Mehrabian and Russell (1974). A total of 15 items were measured on a seven-point bipolar scale. To measure information relevancy, four items were borrowed from Mason et al. (1995). Intention to use LBMSS was captured using two items developed by Blackwell, and Miniard (1995) and one items developed by the authors. Data analyses were conducted using SPSS 19.0 and LISREL 8.72. A total of usable 335 data were obtained after deleting the incomplete responses, which results in a response rate of 11.20%. A little over half of the respondents were male (53.9%) and approximately 60% of respondents were married (57.4%). The mean age of the sample was 29.44 years with a range from 19 to 60 years. In terms of the ethnicity there were European Americans (54.5%), Hispanic American (5.3%), African-American (3.6%), and Asian American (2.9%), respectively. The respondents were highly educated; close to 62.5% of participants in the study reported holding a college degree or its equivalent and 14.5% of the participants had graduate degree. The sample represents all income categories: less than $24,999 (10.8%), $25,000-$49,999 (28.34%), $50,000-$74,999 (13.8%), and $75,000 or more (10.23%). The respondents of the study indicated that they were employed in many occupations. Responses came from all 42 states in the U.S. To identify the dimensions of research constructs, Exploratory Factor Analysis (EFA) using a varimax rotation was conducted. As indicated in table 1, these dimensions: arousal, dominance, relevancy, pleasure, and intention to use, suggested by the EFA, explained 82.29% of the total variance with factor loadings ranged from .74 to .89. As a next step, CFA was conducted to validate the dimensions that were identified from the exploratory factor analysis and to further refine the scale. Table 1 exhibits the results of measurement model analysis and revealed a chi-square of 202.13 with degree-of-freedom of 89 (p =.002), GFI of .93, AGFI = .89, CFI of .99, NFI of .98, which indicates of the evidence of a good model fit to the data (Bagozzi and Yi, 1998; Hair et al., 1998). As table 1 shows, reliability was estimated with Cronbach's alpha and composite reliability (CR) for all multi-item scales. All the values met evidence of satisfactory reliability in multi-item measure for alpha (>.91) and CR (>.80). In addition, we tested the convergent validity of the measure using average variance extracted (AVE) by following recommendations from Fornell and Larcker (1981). The AVE values for the model constructs ranged from .74 through .85, which are higher than the threshold suggested by Fornell and Larcker (1981). To examine discriminant validity of the measure, we again followed the recommendations from Fornell and Larcker (1981). The shared variances between constructs were smaller than the AVE of the research constructs and confirm discriminant validity of the measure. The causal model testing was conducted using LISREL 8.72 with a maximum-likelihood estimation method. Table 2 shows the results of the hypotheses testing. The results for the conceptual model revealed good overall fit for the proposed model. Chi-square was 342.00 (df = 92, p =.000), NFI was .97, NNFI was .97, GFI was .89, AGFI was .83, and RMSEA was .08. All paths in the proposed model received significant statistical support except H2. The paths from arousal to pleasure (H1: ${\ss}$=.70; t = 11.44), from information relevancy to intention to use (H3 ${\ss}$ =.12; t = 2.36), from information relevancy to pleasure (H4 ${\ss}$ =.15; t = 2.86), and pleasure to intention to use (H5: ${\ss}$=.54; t = 9.05) were significant. However, the path from dominance to pleasure was not supported. This study investigated consumer intention to use a location-based mobile shopping service (LBMSS) that integrates cognitive and affective responses. Information relevancy was integrated into pleasure-arousal-dominance (PAD) emotional state model as a conceptual framework. The results of the present study support previous studies indicating that emotional responses as well as cognitive responses have a strong impact on accepting new technology. The findings of this study suggest potential marketing strategies to mobile service developers and retailers who are considering the implementation of LBMSS. It would be rewarding to develop location-based mobile services that integrate information relevancy and which cause positive emotional responses.

  • PDF

Studies on the selection in soybean breeding. -II. Additional data on heritability, genotypic correlation and selection index- (대두육종에 있어서의 선발에 관한 실험적연구 -속보 : 유전력ㆍ유전상관, 그리고 선발지수의 재검토-)

  • Kwon-Yawl Chang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.89-98
    • /
    • 1965
  • The experimental studies were intended to clarify the effects of selection, and also aimed at estimating the heritabilities, the genotypic correlations among some agronomic characters, and at calculating the selection index on some selective characters for the selection of desirable lines, under different climatic conditions. Finally practical implications of these studies, especially on the selection index, were discussed. Twenty-two varieties, determinate growing habit type, were selected at random from the 138 soybean varieties cultivated the year before, were grown in a randomized block design with three replicates at Chinju, Korea, under May and June sowing conditions. The method of estimating heritabilities for the eleven agronomic characters-flowering date, maturity date, stem length, branch numbers per plant, stem diameter, plant weight, pod numbers per plant, grain numbers per plant and 100 grain weight, shown in Table 3, was the variance components procedures in a replicated trial for the varieties. The analysis of covariance was used to obtain the genotypic correlations and phenotypic correlations among the eight characters, and the selection indexes for some agronomic characters were calculated by Robinson's method. The results are summarized as follows: Heritabilities : The experiment on the genotype-environment interaction revealed that in almost all of the characters investigated the interaction was too large to be neglected and materially affected the estimates of various genotypic parameters. The variation in heritability due to the change of environments was larger in the characters of low heritability than in those of high heritability. Heritability values of flowering date, fruiting period (days from flowering to maturity), stem length and 100 grain weight were the highest in both environments, those of yield(grain weight) and other characters were showed the lower values(Table 3). These heritability values showed a decreasing trend with the delayed sowing in the experiments. Further, all calculated heritability values were higher than anticipated. This was expected since these values, which were the broad sense heritability, contain the variance due to dominance and epistasisf in addition to the additive genetic variance. Genotypic correlations : Genotypic correlations were slightly higher than the corresponding phenotypic correlations in both environments, but the variation in values due to the change of environment appeared between grain weight and some other characters, especially an increase between grain weight and flowering date, and the total growing period(Table 6). Genotypic correlations between grain weight and other characters indicated that high seed yield was genetically correlated with late flowering, late maturity, and the other five characters namely branch numbers per plant, stem diameter, plant weight, pod numbers per plant and grain numbers per plant, but not with 100 grain weight of soybeans. Pod numbers and grain numbers per plant were more closely correlated with seed yields than with other characters. Selection index : For the comparison and the use of selection indexes in the selection, two kinds of selection indexes were calculated, the former was called selection index A and the later selection index B as shown in Table 7. Selection index A was calculated by the values of grain weight per plant as the character of yield(character Y), but the other, selection index B, was calculated by the values of pod numbers per plant, instead of grain weight per plant, as the character of yield'(character Y'). These results suggest that selection index technique is useful in soybean breeding. In reality, however, as the selection index varies with population and environment, it must be calculated in each population to which selection is applied and in each environment in which the population is located. In spite of the expected usefulness of selection index technique in soybean breeding, unsolved problems such as the expense, time and labor involved in calculating the selection index remain. For these reasons and from these experimental studies, it was recognized that in the breeding of self-fertilized soybean plants the selection for yield should be based on a more simple selection index such as selection index B of these experiments rather than on the complex selection index such as selection index A. Furthermore, it was realized that the selection index for the selection should be calculated on the basis of the data of some 3-4 agronomic characters-maturity date(X$_1$), branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant etc. It must be noted that it should be successful in selection to select for maturity date(X$_1$) which has high heritability, and the selection index should be calculated easily on the basis of the data of branch numbers per plant(X$_2$), stem diameter(X$_3$) and pod numbers per plant, directly after the harvest before drying and threshing. These characters should be very useful agronomic characters in the selection of Korean soybeans, determinate growing habit type, as they could be measured or counted easily thus saving time and expense in the duration from harvest to drying and threshing, and are affected more in soybean yields than the other agronomic characters.

  • PDF