• Title/Summary/Keyword: Variance estimation

Search Result 737, Processing Time 0.026 seconds

A Note on Performance of Conditional Akaike Information Criteria in Linear Mixed Models

  • Lee, Yonghee
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.5
    • /
    • pp.507-518
    • /
    • 2015
  • It is not easy to select a linear mixed model since the main interest for model building could be different and the number of parameters in the model could not be clearly defined. In this paper, performance of conditional Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected conditional Akaike Information Criteria shows promising performance when candidate models exclude large models containing the true model, but bias-corrected one prefers over-parametrized models more intensively when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some difficulty to select the true model when the design for random effects is nested.

On inference of multivariate means under ranked set sampling

  • Rochani, Haresh;Linder, Daniel F.;Samawi, Hani;Panchal, Viral
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2018
  • In many studies, a researcher attempts to describe a population where units are measured for multiple outcomes, or responses. In this paper, we present an efficient procedure based on ranked set sampling to estimate and perform hypothesis testing on a multivariate mean. The method is based on ranking on an auxiliary covariate, which is assumed to be correlated with the multivariate response, in order to improve the efficiency of the estimation. We showed that the proposed estimators developed under this sampling scheme are unbiased, have smaller variance in the multivariate sense, and are asymptotically Gaussian. We also demonstrated that the efficiency of multivariate regression estimator can be improved by using Ranked set sampling. A bootstrap routine is developed in the statistical software R to perform inference when the sample size is small. We use a simulation study to investigate the performance of the method under known conditions and apply the method to the biomarker data collected in China Health and Nutrition Survey (CHNS 2009) data.

Probabilistic Simulation for Extraction of Reliability Design Data (설계자료 추출을 위한 확률 시뮬레이션)

  • 김선진
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.2
    • /
    • pp.152-161
    • /
    • 1993
  • This paper deals with the effect of spatial distribution of material properties on its statistical characteristics and numerical estimation method of reliability of fatigue sensitive structures with respect to the fatigue crack growth. A method is proposed to determine experimentally the probability distribution functions of material parameters of Paris law. da/dN=C(ΔK/K sub(0) ) super(m), using stress intensity factor controlled fatigue tests. The result with a high tensile strength steel shows that the distribution of the parameter m is approximately normal and that of 1/C, is a 3-parameter Weibull. The main result obtained are : (1) The theoretical autocorrelation of the resistance, 1/C, to fatigue crack growth are almost same for different lengths. (2) The variance decreases with the increasing a averaging length. When spatial correlation length is very small. the variane decreases significantly were the averaging length. (3) The probability distribution of load cycles or the number for a crack to reach a certain length can be estimated using these functions by simulation of non-Gaussian(expecially Weibull) Stochastic Process.

  • PDF

Use of Crown Feature Analysis to Separate the Two Pine Species in QuickBird Imagery

  • Kim, Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2008
  • Tree species-specific estimates with spacebome high-resolution imagery improve estimation of forest biomass which is needed to predict the long term planning for the sustainable forest management(SFM). This paper is a contribution to develop crown distinguishing coniferous species, Pinus densiflora and Pinus koraiensis, from QuickBird imagery. The proposed feature analysis derived from shape parameters and first and second-order statistical texture features of the same test area were compared for the two species separation and delineation. As expected, initial studies have shown that both formfactor and compactness shape parameters provided the successful differentiating method between the pine species within the compartment for single crown identification from spaceborne high resolution imagery. Another result revealed that the selected texture parameters - the mean, variance, angular second moment(ASM) - in the infrared band image could produce good subset combination of texture features for representing detailed tree crown outline.

Combined Correlation Methods for Multipopulation Metamodel (다분포 대형 시뮬레이션 모형에 대한 결합상관방법)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.1 no.1
    • /
    • pp.1-16
    • /
    • 1992
  • This research develops two variance reduction methods for estimating the parameters of the experimental simulation model having multiple design points based on an approach focusing on reduction of the variances of the mean responses across multiple design points. The first method extends a combined approach of antithetic variates and control variates for a single design point to the multipopulation context with independent streams across the design points. The second method extends the same strategy in conjunction with the Schruben-Margolin method for improving the first method. We illustrate an example for implementing the second method. We expect these two approaches may improve the estimation of the parameters of interest compared with the control variates method.

  • PDF

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Ninahuanca, Jose Luis Hinostroza;Tormena Jr., Osmar;Meloni, Luis Geraldo Pedroso
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.978-990
    • /
    • 2021
  • This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

The skew-t censored regression model: parameter estimation via an EM-type algorithm

  • Lachos, Victor H.;Bazan, Jorge L.;Castro, Luis M.;Park, Jiwon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.333-351
    • /
    • 2022
  • The skew-t distribution is an attractive family of asymmetrical heavy-tailed densities that includes the normal, skew-normal and Student's-t distributions as special cases. In this work, we propose an EM-type algorithm for computing the maximum likelihood estimates for skew-t linear regression models with censored response. In contrast with previous proposals, this algorithm uses analytical expressions at the E-step, as opposed to Monte Carlo simulations. These expressions rely on formulas for the mean and variance of a truncated skew-t distribution, and can be computed using the R library MomTrunc. The standard errors, the prediction of unobserved values of the response and the log-likelihood function are obtained as a by-product. The proposed methodology is illustrated through the analyses of simulated and a real data application on Letter-Name Fluency test in Peruvian students.

Gaussian Process Regression and Its Application to Mathematical Finance (가우시언 과정의 회귀분석과 금융수학의 응용)

  • Lim, Hyuncheul
    • Journal for History of Mathematics
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2022
  • This paper presents a statistical machine learning method that generates the implied volatility surface under the rareness of the market data. We apply the practitioner's Black-Scholes model and Gaussian process regression method to construct a Bayesian inference system with observed volatilities as a prior information and estimate the posterior distribution of the unobserved volatilities. The variance instead of the volatility is the target of the estimation, and the radial basis function is applied to the mean and kernel function of the Gaussian process regression. We present two types of Gaussian process regression methods and empirically analyze them.

A hybrid evaluation of information entropy meta-heuristic model and unascertained measurement theory for tennis motion tracking

  • Zhong, Yongfeng;Liang, Xiaojun
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.263-279
    • /
    • 2022
  • In this research, the physical education training quality was investigated using the entropy model to compute variance associated with a random value (a strong tool). The entropy and undefined estimation principles are used to extract the greatest entropy of information dependent on the index system. In the study of tennis motion tracking from a dynamic viewpoint, such stages are utilized to improve the perception of the players' achievement (Lv et al. 2020). Six female tennis players served on the right side (50 cm from the T point). The initial flat serve from T point was the movement under consideration, and the entropy was utilized to weigh all indications. As a result, a multi-index measurement vector is stabilized, followed by the confidence level to determine the structural plane establishment range. As a result, the use of the unascertained measuring technique of information entropy showed an excellent approach to assessing athlete performance more accurately than traditional ways, enabling coaches and athletes to enhance their movements successfully.

A selective review of nonlinear sufficient dimension reduction

  • Sehun Jang;Jun Song
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.2
    • /
    • pp.247-262
    • /
    • 2024
  • In this paper, we explore nonlinear sufficient dimension reduction (SDR) methods, with a primary focus on establishing a foundational framework that integrates various nonlinear SDR methods. We illustrate the generalized sliced inverse regression (GSIR) and the generalized sliced average variance estimation (GSAVE) which are fitted by the framework. Further, we delve into nonlinear extensions of inverse moments through the kernel trick, specifically examining the kernel sliced inverse regression (KSIR) and kernel canonical correlation analysis (KCCA), and explore their relationships within the established framework. We also briefly explain the nonlinear SDR for functional data. In addition, we present practical aspects such as algorithmic implementations. This paper concludes with remarks on the dimensionality problem of the target function class.