• Title/Summary/Keyword: Variance Reduction Techniques

Search Result 29, Processing Time 0.024 seconds

Determination of Incentive Level of Direct Load Control using Probabilistic Technique with Variance Reduction Technique (확률적 기법을 통한 직접부하제어의 제어지원금 산정)

  • Jeong Yun-Won;Park Jong-Bae;Shin Joong-Rin
    • Journal of Energy Engineering
    • /
    • v.14 no.1
    • /
    • pp.46-53
    • /
    • 2005
  • This paper presents a new approach for determining an accurate incentive levels of Direct Load Control (DLC) program using probabilistic techniques. The economic analysis of DLC resources needs to identify the hourly-by-hourly expected energy-not-served resulting from the random outage characteristics of generators as well as to reflect the availability and duration of DLC resources, which results the computational explosion. Therefore, the conventional methods are based on the scenario approaches to reduce the computation time as well as to avoid the complexity of economic studies. In this paper, we have developed a new technique based on the sequential Monte Carlo simulation to evaluate the required expected load control amount in each hour and to decide the incentive level satisfying the economic constraints. In addition, we have applied the variance reduction technique to enhance the efficiency of the simulation. To show the efficiency and effectiveness of the suggested method, the numerical studies have been performed for the modified IEEE 24-bus reliability test system.

Determination of Incentive Level of Direct Load Control using Monte Carlo Simulation with Variance Reduction Technique (몬테카를로 시뮬레이션을 이용한 직접부하제어의 제어지원금 산정)

  • Jeong Yun Won;Park Jong Bae;Shin Joong Rin;Chae Myung Suk
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.666-670
    • /
    • 2004
  • This paper presents a new approach for determining an accurate incentive levels of Direct Load Control (DLC) program using sequential Monte Carlo Simulation (MCS) techniques. The economic analysis of DLC resources needs to identify the hourly-by-hourly expected energy-not-served resulting from the random outage characteristics of generators as well as to reflect the availability and duration of DLC resources, which results the computational explosion. Therefore, the conventional methods are based on the scenario approaches to reduce the computation time as well as to avoid the complexity of economic studies. In this paper, we have developed a new technique based on the sequential MCS to evaluate the required expected load control amount in each hour and to decide the incentive level satisfying the economic constraints. And also the proposed approach has been considered multi-state as well as two-state of the generating units. In addition, we have applied the variance reduction technique to enhance the efficiency of the simulation. To show the efficiency and effectiveness of the suggested method the numerical studies have been performed for the modified IEEE reliability test system.

  • PDF

Improved time and frequency synchronization for dual-polarization OFDM systems

  • Ninahuanca, Jose Luis Hinostroza;Tormena Jr., Osmar;Meloni, Luis Geraldo Pedroso
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.978-990
    • /
    • 2021
  • This article presents techniques for improved estimation of symbol timing offset (STO) and carrier frequency offset (CFO) for dual-polarization (DP) orthogonal frequency division multiplex (DP-OFDM) systems. Recently, quaternion multiple-input multiple-output OFDM has been proposed for high spectral efficiency communication systems, which can flexibly explore different types of diversities such as space, time, frequency, and polarization. This article focuses on synchronization techniques for DP-OFDM systems using a cyclic prefix, where the application of quaternion algebra leads to new improved estimators. Simulations performed for DP system methods show faster reduction of STO estimator variance with a double-slope line in the logvariance line versus signal-to-noise ratio (SNR) plot compared with singlepolarization (SP) counterparts, and simulations for CFO estimates show a 3-dB gain of DP over SP estimates for same SNR values defined, respectively, for quaternion-valued or complex-valued signals. Cramer-Rao bounds for STO and CFO are derived for the synchronization methods, correlating with the observed gains of DP over SP OFDM systems.

Dose Computational Time Reduction For Monte Carlo Treatment Planning

  • Park, Chang-Hyun;Park, Dahl;Park, Dong-Hyun;Park, Sung-Yong;Shin, Kyung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.116-118
    • /
    • 2002
  • It has been noted that Monte Carlo simulations are the most accurate method to calculate dose distributions in any material and geometry. Monte Carlo transport algorithms determine the absorbed dose by following the path of representative particles as they travel through the medium. Accurate Monte Carlo dose calculations rely on detailed modeling of the radiation source. We modeled the effects of beam modifiers such as collimators, blocks, wedges, etc. of our accelerator, Varian Clinac 600C/D to ensure accurate representation of the radiation source using the EGSnrc based BEAM code. These were used in the EGSnrc based DOSXYZ code for the simulation of particles transport through a voxel based Cartesian coordinate system. Because Monte Carlo methods use particle-by-particle methods to simulate a radiation transport, more particle histories yield the better representation of the actual dose. But the prohibitively long time required to get high resolution and accuracy calculations has prevented the use of Monte Carlo methods in the actual clinical spots. Our ultimate aim is to develop a Monte Carlo dose calculation system designed specifically for radiation therapy planning, which is distinguished from current dose calculation methods. The purpose of this study in the present phase was to get dose calculation results corresponding to measurements within practical time limit. We used parallel processing and some variance reduction techniques, therefore reduced the computational time, preserving a good agreement between calculations of depth dose distributions and measurements within 5% deviations.

  • PDF

Chloride penetration resistance of concrete containing ground fly ash, bottom ash and rice husk ash

  • Inthata, Somchai;Cheerarot, Raungrut
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • This research presents the effect of various ground pozzolanic materials in blended cement concrete on the strength and chloride penetration resistance. An experimental investigation dealing with concrete incorporating ground fly ash (GFA), ground bottom ash (GBA) and ground rice husk ash (GRHA). The concretes were mixed by replacing each pozzolan to Ordinary Portland cement at levels of 0%, 10%, 20% and 40% by weight of binder. Three different water to cement ratios (0.35, 0.48 and 0.62) were used and type F superplasticizer was added to keep the required slump. Compressive strength and chloride permeability were determined at the ages of 28, 60, and 90 days. Furthermore, using this experimental database, linear and nonlinear multiple regression techniques were developed to construct a mathematical model of chloride permeability in concretes. Experimental results indicated that the incorporation of GFA, GBA and GRHA as a partial cement replacement significantly improved compressive strength and chloride penetration resistance. The chloride penetration of blended concrete continuously decreases with an increase in pozzolan content up to 40% of cement replacement and yields the highest reduction in the chloride permeability. Compressive strength of concretes incorporating with these pozzolans was obviously higher than those of the control concretes at all ages. In addition, the nonlinear technique gives a higher degree of accuracy than the linear regression based on statistical parameters and provides fairly reasonable absolute fraction of variance ($R^2$) of 0.974 and 0.960 for the charge passed and chloride penetration depth, respectively.

A Study on Structural Reliability Analysis Models (구조물(構造物)의 신뢰도(信賴度) 해석(解析)모델에 관(關)한 연구(硏究))

  • Lee, Bong Hak
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.37-46
    • /
    • 1985
  • Recently-used structural reliability models are studied, and the usage and characteristics of each method are discussed. Although the First-Order Second Moment method may be efficient in structural reliability analysis, it has limitations which the limit state equation is linear and all the variables are normal. In that point, the Advanced Second-Moment(ASM) method have many good results, but computation of iterative method are trublesome. The results of ASM method similar to Variance Reduction Techniques(VRT), which is one of the Monte Carlo simulation methods. As a results, it is concluded that ASM method and VRT method are most efficient one.

  • PDF

Control Variates for Percentile Estimation of Project Completion Time in PERT Network (통제변수를 이용한 PERT 네트워크에서 프로젝트 완료확률의 추정)

  • 권치명
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.4
    • /
    • pp.67-75
    • /
    • 2000
  • Often system analysts are interested in the estimation of percentile for system performance. For instance, in PERT network system, the percentile that the project. Typically the control variate method is used to reduce the variability of mean response using the correlation between the response and the control variates with a little additional cost during the course of simulation. In the same spirit, we apply this method to estimate the percentile of project completion time in PERT system, and evaluate the efficiency of the controlled estimator for its percentile.1 Simulation results indicate that the controlled estimators are more effective in reducing the variances of estimators than the simple estimators, however those tend to a little underestimate the percentiles for some critical values. We need more simulation experiments to examine such a kind of bias problem. We expect this research presents a step forward in the area of variance reduction techniques of stochastic simulation.

  • PDF

Selective pole filtering based feature normalization for performance improvement of short utterance recognition in noisy environments (잡음 환경에서 짧은 발화 인식 성능 향상을 위한 선택적 극점 필터링 기반의 특징 정규화)

  • Choi, Bo Kyeong;Ban, Sung Min;Kim, Hyung Soon
    • Phonetics and Speech Sciences
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2017
  • The pole filtering concept has been successfully applied to cepstral feature normalization techniques for noise-robust speech recognition. In this paper, it is proposed to apply the pole filtering selectively only to the speech intervals, in order to further improve the recognition performance for short utterances in noisy environments. Experimental results on AURORA 2 task with clean-condition training show that the proposed selectively pole-filtered cepstral mean normalization (SPFCMN) and selectively pole-filtered cepstral mean and variance normalization (SPFCMVN) yield error rate reduction of 38.6% and 45.8%, respectively, compared to the baseline system.

Shielding analyses supporting the Lithium loop design and safety assessments in IFMIF-DONES

  • Gediminas Stankunas ;Yuefeng Qiu ;Francesco Saverio Nitti ;Juan Carlos Marugan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1210-1217
    • /
    • 2023
  • The assessment of radiation fields in the lithium loop pipes and dump tank during the operation were performed for International Fusion Materials Irradiation Facility - DEMO-Oriented NEutron Source (IFMIF-DONES) in order to obtain the radiation dose-rate maps in the component surroundings. Variance reduction techniques such as weight window mesh (produced with the ADVANTG code) were applied to bring the statistical uncertainty down to a reasonable level. The biological dose was given in the study, and potential shielding optimization is suggested and more thoroughly evaluated. The MCNP Monte Carlo was used to simulate a gamma particle transport for radiation shielding purposes for the current Li Systems' design. In addition, the shielding efficiency was identified for the Impurity Control System components and the dump tank. The analysis reported in this paper takes into account the radiation decay source from and activated corrosion products (ACPs), which is created by d-Li interaction. As a consequence, the radiation (resulting from ACPs and Be-7) shielding calculations have been carried out for safety considerations.

Monte Carlo shielding evaluation of a CSNS Multi-Physics instrument

  • Liang, Tairan;Shen, Fei;Yin, Wen;Xu, Juping;Yu, Quanzhi;Liang, Tianjiao
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1998-2004
    • /
    • 2019
  • The Multi-Physics (MP) instrument is one of 20 neutron spectrometers planned in the China Spallation Neutron Source (CSNS). This paper presents a shielding calculation for the MP instrument using Monte Carlo codes MCNPX and FLUKA. First, the neutrons that escape from the CSNS decoupled water moderator and are delivered to the beam line of the MP instrument are calculated to use as the source term of the shielding calculation. Then, to validate the calculation method based on multiple variance reduction techniques, a cross check between MCNPX and FLUKA codes is performed by comparing the calculation results of the dose rate distribution on a simplified beam line model. Finally, a complete geometry model of the MP instrument is set up, and the primary parameters for the shielding design are obtained according to the calculated dose rate map considering different worst-case scenarios.