• 제목/요약/키워드: Variable-speed wind generator system

검색결과 107건 처리시간 0.026초

High Performance MPPT Based on Variable Speed Generator Driven by Wind Power Generation in Battery Applications

  • Padmanabhan, Sutha;Kaliyappan, Kannan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.205-213
    • /
    • 2014
  • A wind generator (WG) maximum power point tracking (MPPT) system is presented here. It comprises of a variable-speed wind generator, a high-efficiency boost-type dc/dc converter and a control unit. The advantages of the aimed system are that it does not call for the knowledge of the wind speed or the optimal power characteristics and that it operates at a variable speed, thus providing high efficiency. The WG operates at variable speed and thus suffers lower stress on the shafts and gears compared to constant-speed systems. It results in a better exploitation of the available wind energy, especially in the low wind-speed range of 2.5-4.5 m/s. It does not depend on the WG wind and rotor-speed ratings or the dc/dc converter power rating. Higher reliability, lower complexity and cost, and less mechanical stress of the WG. It can be applied to battery-charging applications.

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어 (Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator)

  • 송승호;김성주;함년근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Maximum Power Tracking Control for parallel-operated DFIG Based on Fuzzy-PID Controller

  • Gao, Yang;Ai, Qian
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2268-2277
    • /
    • 2017
  • As constantly increasing wind power penetrates power grid, wind power plants (WPPs) are exerting a direct influence on the traditional power system. Most of WPPs are using variable speed constant frequency (VSCF) wind turbines equipped with doubly fed induction generators (DFIGs) due to their high efficiency over other wind turbine generators (WTGs). Therefore, the analysis of DFIG has attracted considerable attention. Precisely measuring optimum reference speed is basis of utilized maximum wind power in electric power generation. If the measurement of wind speed can be easily taken, the reference of rotation speed can be easily calculated by known system's parameters. However, considering the varying wind speed at different locations of blade, the turbulence and tower shadow also increase the difficulty of its measurement. The aim of this study is to design fuzzy controllers to replace the wind speedometer to track the optimum generator speed based on the errors of generator output power and rotation speed in varying wind speed. Besides, this paper proposes the fuzzy adaptive PID control to replace traditional PID control under rated wind speed in variable-pitch wind turbine, which can detect and analyze important aspects, such as unforeseeable conditions, parameters delay and interference in the control process, and conducts online optimal adjustment of PID parameters to fulfill the requirement of variable pitch control system.

영구자석형 풍력-디젤-BESS 복합발전시스템 모델링 및 운전제어 알고리즘에 관한 연구 (Modeling & Operating Algorithm of Hybrid Generation System with PMSG Wind Turbine, Diesel Generator and BESS)

  • 오준석;정의용;박종호;박민수;김재언
    • 전기학회논문지
    • /
    • 제65권5호
    • /
    • pp.724-729
    • /
    • 2016
  • Nowadays high-cost energy storage system using flywheel or secondary battery is applying to hybrid generation system with WT(Wind Turbine) and diesel generator in island areas for stable operation. This paper proposes an operating algorithm and modeling method of the hybrid generation system that can operate for variable wind speed and load, which is composed of energy storage system, variable-speed PMSG(Permanent Magnet Synchronous Generator) WT and diesel generator applied in island areas. Initially, the operating algorithm was proposed for frequency and voltage to be maintained within the proper ranges for load and wind speed changes. Also, the modeling method is proposed for variable speed PMSG WT, diesel generator and BESS(Battery Energy Storage System). The proposed operating algorithm and modeling method were applied to a typical island area. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

이중여자 유도발전기를 이용한 가변속운전과 정속운전 풍력발전시스템의 운전특성 비교 (Comparison of Characteristics for Variable Operation using Doubly-fed Induction Generator and Fixed Speed Operation in Wind Turbine System)

  • 노경수;김태호
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1313-1320
    • /
    • 2009
  • This paper analyzes the steady-state operating characteristics of doubly-fed induction generator(DFIG) and fixed-speed induction generator(FSIG) in wind turbine system. It also presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and compares the responses between DFIG and FSIG wind turbine systems with respect to wind speed variation, 3-phase fault and 1-phase ground fault of the network. Simulation results show the variations of generator's active/reactive output, rotor speed, terminal voltage, fault current, etc. Case studies demonstrate that DFIG illustrates better performance compared to FSIG.

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권1호
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

다변풍속 적응형 Darrieus-Sauonius 초합 수직푹 풍력발전 시스템의 설계 (A design of vertical axis wind power generating system combined with Darrieus-Savonius for adaptation of variable wind speed)

  • 서영택;오철수
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.185-192
    • /
    • 1996
  • This paper presents a design of vertical axis Darrieus wind turbine combine with Savonius for wind-power generating system to be adapted for variable wind speed. The wind turbine consists of two troposkien- and four Savonius-blades. Darrieus turbine is designed with diameter 9.4[m], chord length 380[mm], tip speed ratio 5. Savonius turbine is designed with diameter 1.8[m], height 2[m], tip speed ratio 0.95. The design of turbine is laid for the main data of rated wind speed 10[m/s], turbine speed 101.4[rpm]. The generating power is estimated to maximum power 20[kW], and this is converted to commercial power line by means of three phase synchronous generator-inverter system. Generating system is designed for operation on VSVF(variable speed variable frequency) condition and constant voltage system.

  • PDF

Super-Twisting Sliding Mode Control Design for Cascaded Control System of PMSG Wind Turbine

  • Phan, Dinh Hieu;Huang, ShouDao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1358-1366
    • /
    • 2015
  • This study focuses on an advanced second-order sliding mode control strategy for a variable speed wind turbine based on a permanent magnet synchronous generator to maximize wind power extraction while simultaneously reducing the mechanical stress effect. The control design based on a modified version of the super-twisting algorithm with variable gains can be applied to the cascaded system scheme comprising the current control loop and speed control loop. The proposed control inheriting the well-known robustness of the sliding technique successfully deals with the problems of essential nonlinearity of wind turbine systems, the effects of disturbance regarding variation on the parameters, and the random nature of wind speed. In addition, the advantages of the adaptive gains and the smoothness of the control action strongly reduce the chatter signals of wind turbine systems. Finally, with comparison with the traditional super-twisting algorithm, the performance of the system is verified through simulation results under wind speed turbulence and parameter variations.

Optimal Efficiency Control of Wind Generation System Using Fuzzy Logic Control

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1750-1752
    • /
    • 2005
  • This paper presents a variable speed wind generation system where fuzzy logic controllers is used as efficiency optimizer. The fuzzy logic controller increments the machine flux by on-line search to improve the generator efficiency in case of light load. The speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power The generator reference speed is adjusted according to the optimum tip-speed ratio. The complete control system has been developed by simulation study.

  • PDF