• Title/Summary/Keyword: Variable pressure regulator

Search Result 14, Processing Time 0.02 seconds

Modeling or an Engine System for Idle Speed Control (공회전 속도제어를 위한 엔진 시스템 모델)

  • Jo, Jang-Won;Lee, Youn-Seop;Lee, Deog-Kyoo;Choi, Don;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.430-433
    • /
    • 1989
  • This paper describes dynamic engine model that is appricable to idle speed control system development. A basic linear engine model responds to throttle and load torque Inputs to provide manifold pressure and speed outputs. Transfer functions are then derived for the modified linear engine model and significant dynamic characteristics are discussed. Lastly, the strategy for controlling idle speed uses the linear optimal control theory. The linear optimal regulator was designed using a state variable and the performance Index was minimized.

  • PDF

Experimental Study on Optimal Generation of Methane Hydrate (가스하이드레이트 생성조건 최적화에 관한 실험적 연구)

  • Yoon, Seok-Ho;Lee, Jung-Ho;Lee, Kong-Hoon;Park, Sang-Jin
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1317-1321
    • /
    • 2009
  • Natural gas liquefaction plant and LNG carrier needs large capital investment. Therefore a lot of small or middle scale natural gas fields aren't developed due to poor profitability. If natural gas is made to gas hydrate instead of liquefaction, developing small-scale natural gas field can be profitable because building cost of gas hydrate plant and carrier are economical. Because the process of making gas hydrate consumes much energy, the gas hydrate formation process has to be optimized for energy consumption. In this study, gas hydrate formation process was investigated experimentally. Experimental apparatus consists of reactor, pressure regulator, chiller, and magnetic stirrer. 99.95% methane was used to make gas hydrate. Tests were conducted at variable pressure and temperature condition.

  • PDF

A Control of CVT Hydraulic System using Embedded System (임베디드 시스템을 이용한 CVT 유압시스템 제어)

  • Han, K.W.;Ryu, W.S.;Jang, I.G.;Jean, J.W.;Kim, H.S.;Hwang, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.1
    • /
    • pp.18-24
    • /
    • 2007
  • The continuously variable transmission (CVT) of which speed ratio can change continuously in a fixed range has the benefits of low fuel consumption and exhaust gas because it enables the engine of a vehicle to operate in a high efficiency range regardless of vehicle speed. The speed ratio of belt type CVT is controlled by adjusting line pressure. The one of the line pressure control methods, mechanical-hydraulic control is usually adopting VDT's control method, in which the secondary solenoid valve has two functions both a regulator and a line pressure controller. However, this control method could not show the high performance of CVT with optimal driving capability because of the limitation of simple control algorithm, and it could not gain market share sufficiently in spite of the advantage of CVT with low fuel consumption. On the other hand, the electro-hydraulic control method gives the enhancement of power performance and low fuel consumption by implementing various driving mode using the proportional control or PWM control. The key of CVT technique is to develop a control algorithm of the electro-hydraulic solenoid valve in order to implement the speed ratio efficiently. In this paper, the line pressure control algorithm is proposed and the hydraulic system is controlled using metal belt type CVT test rig and the embedded ECU platform.

  • PDF

Experimental Study on Firing Test of LPI Engine Using Gasoline Fuel for Improving the Production Process at End of line (엔진 착화 라인의 생산성 향상을 위한 LPI 엔진 가솔린 연료 적용성에 대한 실험적 연구)

  • Hwang, In-Goo;Choi, Seong-Won;Myung, Cha-Lee;Park, Sim-Soo;Lee, Jong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.133-140
    • /
    • 2007
  • The purpose of this study was to evaluate the effects of gasoline fuel to the LPI engine. Firing test bench was used in order to assess the effect on gasoline-injected LPI engine. Gasoline fuel was supplied into the reverse direction(3-4-2-1 cylinder) at 3.0 bar with commercial gasoline fuel pump. Engine test was performed using the firing test mode at end of line. The deviations of excess air ratio of each cylinder and maximum combustion pressure using gasoline fuel were within 0.1 and $1{\sim}2\;bar$. Engine start time was measured with changing coolant temperature at $20^{\circ}C,\;40^{\circ}C,\;80^{\circ}C$, respectively. Residual gasoline volume in the fuel line was measured about 32 cc after firing test and it was less than 2 cc within 10 seconds purging. To simulate the end of line, the residual gasoline in the fuel line was purged during 5 and 10 seconds. Start time of LPI engine with LPG fuel were 0.61 and 0.58 seconds. This work showed that severe problems such as misfiring and liner scuffing were not occurred applying gasoline fuel to LPI engine.