• 제목/요약/키워드: Variable parameters

검색결과 1,703건 처리시간 0.028초

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • 제59권2호
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.

Transient memory response of a thermoelectric half-space with temperature-dependent thermal conductivity and exponentially graded modulii

  • Ezzat, Magdy A.
    • Steel and Composite Structures
    • /
    • 제38권4호
    • /
    • pp.447-462
    • /
    • 2021
  • In this work, we consider a problem in the context of thermoelectric materials with memory-dependent derivative for a half space which is assumed to have variable thermal conductivity depending on the temperature. The Lamé's modulii of the half space material is taken as a function of the vertical distance from the surface of the medium. The surface is traction free and subjected to a time dependent thermal shock. The problem was solved by using the Laplace transform method together with the perturbation technique. The obtained results are discussed and compared with the solution when Lamé's modulii are constants. Numerical results are computed and represented graphically for the temperature, displacement and stress distributions. Affectability investigation is performed to explore the thermal impacts of a kernel function and a time-delay parameter that are characteristic of memory dependent derivative heat transfer in the behavior of tissue temperature. The correlations are made with the results obtained in the case of the absence of memory-dependent derivative parameters.

Effect of stacking sequence on thermal stresses in laminated plates with a quasi-square cutout using the complex variable method

  • Chaleshtari, Mohammad H. Bayati;Khoramishad, Hadi
    • Structural Engineering and Mechanics
    • /
    • 제77권2호
    • /
    • pp.245-259
    • /
    • 2021
  • In this research, the influence of the laminate stacking sequence on thermal stress distribution in symmetric composite plates with a quasi-square cutout subjected to uniform heat flux is examined analytically using the complex variable technique. The analytical solution is obtained based on the thermo-elastic theory and the Lekhnitskii's method. Furthermore, by employing a suitable mapping function, the solution of symmetric laminates containing a circular cutout is extended to the quasi-square cutout. The effect of important parameters including the stacking sequence of laminates, the angular position, the bluntness, the aspect ratio of cutout, the flux angle and the composite material are examined on the thermal stress distribution. It is found out that the circular shape for cutout may not necessarily be the optimum geometry for all stacking sequences. The finite element analysis results are used to validate the analytical solution.

A analysis of the robustness of a controller by Monte-Carlo method (몬테카를로 방법에 의한 제어기의 강건성 해석)

  • 정우용;홍성경;김종성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.630-635
    • /
    • 1993
  • In this paper, the Monte-Carlo method was applied to the controller robustness evaluation problems with respect to the uncertainty of critical plant parameters. The plant studied is a aerial vehicle. The-variable parameters are nondimensional stability derivatives, inertias. The nominal nondimensional stability derivatives ,were obtained from wind tunnel test. Also the nominal inertia parameters were calculated from the mass distribution along the vehicle axes. But the parameters obtained from the test or calculations are at best probable and always contain some uncertainties which one can not figure out. So some kinds of robustness evaluation method should be applied. The parametric robustness of the designed classical controller evaluated by the method turned out to be satisfactory.

  • PDF

A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response (세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구)

  • Park Jin-Hyun;Choi Young-Kiu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • 제52권5호
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.

Optimization of Cutting Force for End Milling with the Direction of Cutter Rotation (엔드밀가공에서 커터회전방향에 따른 절삭력의 최적화)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • 제16권2호
    • /
    • pp.79-84
    • /
    • 2017
  • This paper outlines the Taguchi optimization methodology, which is applied to optimize cutting parameters in end milling when machining STS304 with TiAlN coated SKH59 tool under up and down end milling conditions. The end milling parameters evaluated are depth of cut, spindle speed and feed rate. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these end milling parameters. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. An orthogonal array of $L_9(33)$ was used. The most important input parameter for cutting force, however, is the feed rate, and depending on the cutter rotation direction. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

  • PDF

A Fuzzy PI Controller for Pitch Control of Wind Turbine (풍력 발전기 피치 제어를 위한 퍼지 PI 제어기)

  • Cheon, Jongmin;Kim, Jinwook;Kim, Hongju;Choi, Youngkiu;Jin, Maolin
    • Journal of Drive and Control
    • /
    • 제15권1호
    • /
    • pp.28-37
    • /
    • 2018
  • When the wind speed rises above the rated wind speed, the produced power of the wind turbines exceeds the rated power. Even more, the excessive power results in the undesirable mechanical load and fatigue. A solution to this problem is pitch control of the wind turbines. This paper presents a systematic design method of a collective pitch controller for the wind turbines using a discrete fuzzy Proportional-Integral (PI) controller. Unlike conventional PI controllers, the fuzzy PI controller has variable gains according to its input variables. Generally, tuning the parameters of fuzzy PI controller is complex due to the presence of too many parameters strongly coupled. In this paper, a systematic method for the fuzzy PI controller is presented. First, we show the fact that the fuzzy PI controller is a superset of the PI controller in the discrete-time domain and the initial parameters of the fuzzy PI controller is selected by using this relationship. Second, for simplicity of the design, we use only four rules to construct nonlinear fuzzy control surface. The tuning parameters of the proposed fuzzy PI controller are also obtained by the aforementioned relationship between the PI controller and the fuzzy PI controller. As a result, unlike the PI controller, the proposed fuzzy PI controller has variable gains which allow the pitch control system to operate in broader operating regions. The effectiveness of the proposed controller is verified with computer simulations using FAST, a NREL's primary computer-aided engineering tool for horizontal axis wind turbines.

Simultaneous identification of damage in bridge under moving mass by Adjoint variable method

  • Mirzaee, Akbar;Abbasnia, Reza;Shayanfar, Mohsenali
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.449-467
    • /
    • 2018
  • In this paper, a theoretical and numerical study on bridge simultaneous damage detection procedure for identifying both the system parameters and input excitation mass, are presented. This method is called 'Adjoint Variable Method' which is an iterative gradient-based model updating method based on the dynamic response sensitivity. The main advantage of proposed method is inclusion of an analytical method to augment the accuracy and speed of the solution. Moving mass is a model which takes into account the inertia effects of the vehicle. This interaction model is a time varying system and proposed method is capable of detecting damage in this variable system. Robustness of proposed method is illustrated by correctly detection of the location and extension of predetermined single, multiple and random damages in all ranges of speed and mass ratio of moving vehicle. A comparison study of common sensitivity and proposed method confirms its efficiency and performance improvement in sensitivity-based damage detection methods. Various sources of errors including the effects of measurement noise and initial assumption error in stability of method are also discussed.

DC Motor Speed Control by Variable Structure PI Control (가변 구조 PI 제어에 의한 직류 전동기의 속도제어)

  • Lee, Sung-Bak;Lee, Jong-Kyu;Won, Young-Jin;Han, Wan-Oak;Cho, Joon-Hee
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1225-1227
    • /
    • 1992
  • This paper presents a study on the variable structure PI(proportional and integrate) control which is insensible to the variation of parameters or external disturbance for driving DC motor. In the presented variable structure PI control (VSPIC), the sliding mode control was used at the below of 4000 rpm and PI control also used at the above of 4000 rpm with no load. In other way, the PI control was used at the below of 4000 rpm and the sliding mode control at the above of 4000 rpm with some loading, and then the output waveform following the variation of load was measured. intel 8031 microcomputer unit and IBM PC was combined to form the full system and the speed control was performed with it. The experimental result of the fast response to speed was more improve than it was open loop state. For load varing, the sliding mode insensible to external disturbance was applied and the improved response was obtained.

  • PDF

Free Vibrations of Clamped Circular Arches with Linear Variable Cross-Section (1차원 변화단면을 갖는 양단고정 원호아치의 자유진동 해석)

  • Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제9권4호
    • /
    • pp.1-8
    • /
    • 1989
  • The main purpose of the present paper is to present both the fundamental frequency and some higher free vibration frequencies for circular arches with variable section, in which rotatory inertia is included. The differential equations are derived for the in-plan free vibration of elastic circular arches with variable section. These equations were solved numerically for the linear variable circular cross-section with clamped-clamped end constraint. As the numerical results, the four lowest nondimensional natural frequencies presented as functions of the nondimensional system parameters : the end moment of inertia to crown moment of inertia ratio, the slenderness ratio, and the opening angle. The effect of rotatory inertia on the nondimensional natural frequency is also reported.

  • PDF