• 제목/요약/키워드: Variable parameters

검색결과 1,703건 처리시간 0.024초

T-S형 퍼지제어기의 후건부 멤버십함수 동조방법 (The Tuning Method on Consequence Membership Function of T-S Type FLC)

  • 최한수;이경웅
    • 제어로봇시스템학회논문지
    • /
    • 제17권3호
    • /
    • pp.264-268
    • /
    • 2011
  • This paper presents a Takagi-Sugeno (T-S) type Fuzzy Logic Controller (FLC) with only 3 rules. The choice of parameters of FLC is very difficult job on design FLC. Therefore, the choice of appropriate linguistic variable is an important part of the design of fuzzy controller. However, since fuzzy controller is nonlinear, it is difficult to analyze mathematically the affection of the linguistic variable. So this choice is depend on the expert's experience and trial and error method. In this paper, we propose the method to choose the consequence linear equation's parameter of T-S type FLC. The parameters of consequence linear equations of FLC are tuned according to the system error that is the input of FLC. The full equation of T-S type FLC is presented and using this equation, the relation between output and parameters can represented. The parameters are tuned with gradient algorithm. The parameters are changed depending on output. The simulation results demonstrate the usefulness of this T-S type 3 rule fuzzy controller.

A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV

  • Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.211-224
    • /
    • 2019
  • This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control.

설계변수 표본에 근거한 다물체계 성능의 통계적 예측 (Statistical Performance Estimation of a Multibody System Based on Design Variable Samples)

  • 최찬규;유홍희
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1449-1454
    • /
    • 2009
  • The performance variation of a multibody system is affected by a variation of various design variables of the system. And the effects of design variable variations on the performance variation must be considered in design of a multibody system. Accordingly, a variation analysis of a multibody system needs to be conducted in design of a multibody system. For a variation analysis of a performance, population mean and variance which are called statistical parameters of design variables are needed. However, an evaluation of statistical parameters of design variables is impossible in many practical cases. Therefore, an estimation of statistical parameters of the performance based on sample mean and variance which are called statistic of design variables is needed. In this paper, the variation analysis method for a multibody system based on design variable samples was proposed. And, using the proposed method, a variation analysis of the vehicle ride comfort based on sample statistic of design variables was conducted.

Consolidation Analysis of Geotextile Tubes Filled with Highly Compressible Sludge Using Variable Coefficients of Consolidation

  • Kim, Hyeongjoo;Kim, Hyeongsoo
    • 한국지반환경공학회 논문집
    • /
    • 제22권12호
    • /
    • pp.25-32
    • /
    • 2021
  • Geotextile tube technology has been perceived as an economical solution for liquid sludge treatment, and analyzing its consolidation behavior is necessary to be able to evaluate the dewatering capabilities of large geotextile tubes filled with contaminated soil, tailings, sewage sludge, and so on. The objectives of this study are to present a method that can adequately convey the consolidation behavior of geotextile tubes filled with sewage sludge, and to investigate the effects of various geotextile tube consolidation parameters. In this study, variable coefficients of consolidation are utilized to analyze the consolidation process of geotextile tubes filled with sewage sludge. The consolidation solution was verified by comparing the measured and predicted data from a hanging bag test conducted in the literature. After verifying the proposed solution, the consolidation parameters of a geotextile tube composed of a woven polypropylene outer layer and a non-woven polypropylene layer filled sewage sludge were obtained. Using the obtained parameters, the consolidation behavior of a large-scale composite geotextiles tube was predicted.

유전알고리듬을 이용한 유압시스템의 제어파라메터 최적화 (Optimization of Control Parameters for Hydraulic Systems Using Genetic Algorithms)

  • 현장환
    • 대한기계학회논문집A
    • /
    • 제21권9호
    • /
    • pp.1462-1469
    • /
    • 1997
  • This study presents a genetic algorithm-based method for optimizing control parameters in fluid power systems. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics. A genetic algorithm seeks control parameters maximizing a measure that evaluates system performance. Five control gains of the PID-PD cascade controller fr an electrohydraulic speed control system with a variable displacement hydraulic motor are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that optimization of the five gains by manual tuning should be a task of great difficulty and that a genetic algorithm is an efficient scheme giving economy of time and in labor in optimizing control parameters of fluid power systems.

로보트 운용조건을 포함한 가변구조 제어방식에 관한 연구 (A study on the variable structure control method including robot operational condition)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.72-75
    • /
    • 1988
  • Due to the fact that the set point regulation scheme by the variable structure control method concerns only the initial and final locations of a manipulator, many constraints may exist in the application of path tracking with obstracle avoidance. The variable structure parameter should be selected in the trajectory planning step by satisfying the constraints of the travel time and the path deviations This paper presents the selection algorithm of the variable structure parameters with the constraints of the system dynamics and the travel time and the path deviation. This study makes unify the trajectory planning and tracking control using the variable structure control method.

  • PDF

반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석 (CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber)

  • 윤준원
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

可變기통 엔진에서의 最小振動 마운트系 設計를 위한 電算시뮬레이션 (Computer Simulation for Design of Minimum Vibration Mount System in Variable Displacement Engine)

  • 이종원;정경열;곽윤근
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.305-315
    • /
    • 1986
  • 본 연구에서는 가변 기통 엔진의 동특성을 규명하기 위해 세곳으로 지지되는 직렬 4기통 디이젤 엔진에 대한 3자유도 모델을 설정하였고, 이 모델에서 각 마운트의 위치와 경사각 및 방진고무의 크기를 변경시킬 때의 최적화 문제를 컴퓨터 시뮬레이션 으로 고찰하였다.

EXACT SOLUTIONS OF THE MDI AND SAWADA-KOTERA EQUATIONS WITH VARIABLE COEFFICIENTS VIA EXP-FUNCTION METHOD

  • Zhang, Sheng;Abdou, M.A.
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.143-152
    • /
    • 2010
  • Based on the Exp-function method and a suitable transformation, new generalized solitonary solutions including free parameters of the MDI and Sawada-Kotera equations with variable coefficients are obtained, form which solitary wave solutions and periodic solutions including some known solutions reported in open literature are derived as special cases. The free parameters in the obtained generalized solitonary solutions might imply some meaningful results in the physical models. It is shown that the Exp-function method provides a very effective and important new method for nonlinear evolution equations with variable coefficients.

다물체의 기구해석 및 동적거동해석을 위한 오일러 매개변수의 교정방법 (An Euler Parameter Updating Method for Multibody Kinematics and Dynamics)

  • 김성주;배대성;최창곤;양성모
    • 한국자동차공학회논문집
    • /
    • 제4권4호
    • /
    • pp.9-17
    • /
    • 1996
  • This paper develops a sequential updating method of the Euler parameter generalized coordinates for the machine kinematics and dynamics, The Newton's method is slightly modified so as to utilize the Jacobian matrix with respect to the virtual rotation instead of this with repect to the Euler parameters. An intermediate variable is introduced and the modified Newton's method solves for the variable first. Relational equation of the intermediate variable is then solved for the Euler parameters. The solution process is carried out efficiently by symoblic inversion of the relational equation of the intermediate variable and the iteration equation of the Euler parameter normalization constraint. The proposed method is applied to a kinematic and dynamic analysis with the Generalized Coordinate Partitioning method. Covergence analysis is performed to guarantee the local convergence of the proposed method. To demonstrate the validity and practicalism of the proposed method, kinematic analysis of a motion base system and dynamic analysis of a vehicle are carried out.

  • PDF