• Title/Summary/Keyword: Variable load

Search Result 1,346, Processing Time 0.02 seconds

The Study on Fatigue Life Prediction under Biaxial Variable Load (이축 변동하중하에서의 피로수명 예측기법에 관한 연구)

  • 오세종;이현우;전제춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.666-671
    • /
    • 1993
  • Fatigue life prediction under multi-axial variable load were performed for Aluminium 7075-T651 alloy using SAE Notched specimen & Torque tube shaft component specimen. When variable multiaxial load is applied to material, maximum damaged plane(critical plane) change. To clarify the situation, experiment is performed on two different changing load path. For multiaxial fatigue life prediction, miner rule is expanded to critical plane theory. Shear based parameter and Elliptical parameter give better correlation. This suggests that miner rule can be applicable on multi-axial variable load.

  • PDF

Parameters Estimation Characteristics of Five-Phase Squirrel-Cage Induction Motor within Over Current Load (과전류 부하에서 5상 농형 유도전동기의 정수 특성)

  • Kim, Min-Huei
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.7
    • /
    • pp.38-46
    • /
    • 2015
  • This paper propose a variable parameter estimations for variable over current load of five-phase squirrel-cage induction motor(IM) to servo control system. In order to high performance control of AC motor using a field oriented control(FOC) and direct torque control(DTC) algorithm, there are required precise motor parameters for slip calculation, flux observer, controller gain, torque command of current components, rotor position, speed estimation, and so on. We are suggest a analyzed estimation results of the motor parameters that developing five-phase squirrel-cage IM have a stator of concentrated winding for experimental within variable over current load at rated input frequency. There are results of stator winding measurement, no-load test, locked-rotor test, variable over current load test, and estimated parameters of equivalent circuits using manufactured experimental apparatus by IEEE Standard Test Procedure for Polyphase Induction Motors and Generators 112-2004.

Crack Propagation Behavior for Variable Load in Cantilever Beam under Bending Load (굽힘하중의 받는 외팔보의 변동하중에 대한 균열진전 거동)

  • 김엽래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.03a
    • /
    • pp.178-183
    • /
    • 1998
  • This paper examines the crack growth behavior of 7075-T651 and 5052-H32 aluminum alloys for variable load within tensile load range condition. The cantilever beam type specimen with a chevron notch is used in this study. The crack growth and closure are investgated by compliance method. The applied initial stress ratio is R=0.3 and variable load are R=0.65, 0.46. Crack length, stress intensity factor range, ratio of effective stress intensity factor range and crack growth rate etc. are inspected with fracture mechanics estimate.

  • PDF

DESIGN OF ADAPTIVE CONTROLLER OF DC SERVO MOTOR (직류전동기의 적응 제어기 설계에 관한 연구)

  • Chang, S.G.;Won, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.25-28
    • /
    • 1987
  • Design procedure of adaptive controller with variable load condition is present and applied to velocity control of small, permanent magnet DC servo motor. The state feedback control scheme is adopted and Recursive Least Squares algorithm is used for parameter estimation. In order to reduce the time consuming. In the procedure of adaptation-gain tuning of state feedback controller, approximate curve fitting technique is applied to the relations between load condition and poles of the system, load condition and feedback gains. With this method, fast adaptation can be accomplished. It is shown that this procedure can be applied not only to variable load condition but also to variation of other system constants, for example variation of resistance and inductance etc.. Simulation results is present for both cases - variable inertia load, variable motor resistance to verify performance improvements. This design procedure produces an adaptive con troller which is feasible for implementation with microprocessor by reducing calculation time.

  • PDF

Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat (변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

An Adaptive Energy-Efficient and Low-Latency MAC Protocol for Wireless Sensor Networks

  • Liu, Hao;Yao, Guoliang;Wu, Jianhui;Shi, Longxing
    • Journal of Communications and Networks
    • /
    • v.12 no.5
    • /
    • pp.510-517
    • /
    • 2010
  • In this paper, an adaptive MAC protocol (variable load adaptive (VLA)-MAC) is proposed for wireless sensor networks. This protocol can achieve high energy efficiency and provide low latency under variable-traffic-load conditions. In the case of VLA-MAC, traffic load is measured online and used for adaptive adjustment. Sensor nodes transmit packets in bursts under high load conditions to alleviate packet accumulation and reduce latency. This also removes unnecessary listen action and decreases energy consumption in low load conditions. Simulation results show that the energy efficiency, latency, and throughput achieved by VLA-MAC are higher than those achieved by some traditional approaches.

Large deflection of simple variable-arc-length beam subjected to a point load

  • Chucheepsakul, S.;Thepphitak, G.;Wang, C.M.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.1
    • /
    • pp.49-59
    • /
    • 1996
  • This paper considers large deflection problem of a simply supported beam with variable are length subjected to a point load. The beam has one of its ends hinged and at a fixed distance from this end propped by a frictionless support over which the beam can slide freely. This highly nonlinear flexural problem is solved by elliptic-integral method and shooting-optimization technique, thereby providing independent checks on the new solutions. Because the beam can slide freely over the frictionless support, there is a maximum or critical load which the beam can carry and it is dependent on the position of the load. Interestingly, two possible equilibrium configurations can be obtained for a given load magnitude which is less than the critical value. The maximum arc-length was found to be equal to about 2.19 times the fixed distance between the supports and this value is independent of the load position.

A Reconfigurable Directional Coupler Using a Variable Impedance Mismatch Reflector for High Isolation

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.206-209
    • /
    • 2016
  • This letter proposes a reconfigurable directional coupler that uses a variable impedance mismatch reflector to achieve high isolation characteristics in the antenna front end. The reconfigurable coupler consists of a directional coupler and a single-pole four-throw (SP4T) switch with different load impedances as a variable load mismatch reflector. Selection of the load impedance by the reflector allows cancellation of the reflected signal due to antenna load mismatch and the leakage from the input to isolation port of the directional coupler, resulting in high isolation characteristics. The performance of the proposed architecture in separating the received (Rx) signal from the transmitted (Tx) signal in the antenna front end was verified by implementing and testing the reconfigurable coupler at 917 MHz for UHF radio-frequency identification (RFID) applications. The proposed reconfigurable directional coupler showed an improvement in the isolation characteristics of more than 20 dB at the operation frequency band.

Analysis of Fatigue Damage at Wheel under Variable Load (불규칙 하중을 받는 휠에서의 피로 파손 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.753-759
    • /
    • 2010
  • The variable fatigue load is simulated in this study. The stability and the life of the material are analyzed theoretically by Ansys program. These results are successfully applied to the practical wheel to predict the prevention of fracture and the endurance. The life and the damage on the every part of the fatigue specimen can be predicted. As the available lives are compared for every loading variation, the rain flow and damage matrix results can be helpful in determining the effects of small stress cycles in any loading history. The rainbow and damage matrices illustrate the possible effects of infinite life. The safety and stability of wheel and the other practical structures according to the variable load can be estimated by using the results of this study.

Study on the change in stiffness of nailed joints due to creep (CREEP에 의한 못 결합부(結合部)의 강성도(剛性度)의 변화(變化)에 관한 연구(硏究))

  • Jang, Sang-Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.35-43
    • /
    • 1989
  • Nailed joints, which are commonly used in Wooden structures, transmit loads from one member to another and induce partial composite actions between members. Long-term loads induce creep slip in nailed joints and affect load sharing and partial composite action, which may reduce joint stiffness. Two theoretical viscous-viscoelastic models were developed for nailed joints to predict creep behavior under long-term variable loads. Those models were also used to predict stiffness changes under long-term variable loads. The stiffness of nailed joint is defined as a Secant modulus which is called the joint modulus or slip modulus. Input data for the models are the results of constant load tests under three different load levels. To verify the models, nailed joints were also tested under two long-term variable load functions. The predictions of the models were very close to the experimental data. Therefore, the theoretical viscous-viscoelastic models and procedures developed in this study can be applied to predict creep slip and the changes in joint moduli of nailed joints under long-term variable loads.

  • PDF