• 제목/요약/키워드: Variable Structure System

검색결과 848건 처리시간 0.035초

바퀴구동 도립진자에 대한 퍼지 가변구조제어 (Fuzzy Variable Structure Control of Wheel-Driven Inverted Pendulum)

  • 유병국
    • 융합신호처리학회논문지
    • /
    • 제5권4호
    • /
    • pp.301-307
    • /
    • 2004
  • 본 논문에서는 Takagi-Sugeno(T-S) 퍼지모델에 대한 가변구조제어방식을 제안하며 이를 이용한 바퀴구동 도립 진자의 자세제어를 보인다. 비선형 시스템이 T-S 퍼지모델로 모델링 될 수 있다는 가정 하에서 바퀴구동 도립진자에 대하여 몇 개의 대표 동작점을 기준으로 시스템을 선형화하여 퍼지모델을 얻고 이를 통해 가변구조제어이론을 도입하여 제어기를 설계한다. 제안된 제어법칙은 퍼지모델을 구성하는 각각의 선형 부 시스템의 입력이득 행렬을 동일한 행렬로 단일화하고 그 단일화된 제어이득행렬을 토대로 설계되어진다. 이득행렬의 단일화 과정에서 생성되는 불확실성은 가변구조제어 이론의 입력 외란으로 해석되어질 수 있으며 이러한 단일화 외란은 기존 가변구조제어의 강인성에 의해 해결되어질 수 있다. 바퀴구동 도립진자 시스템 예를 통해 제안된 제어알고리즘의 타당성과 유용성을 보인다.

  • PDF

부정합 시스템 행렬 불확실성을 갖는 시스템을 위한 정적 출력 궤환 적분 가변 구조 제어기 (A Static Output Feedback Integral Variable Structure Controller for Uncertain Systems with Unmatched System Matrix Uncertainty)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.411-416
    • /
    • 2010
  • In this paper, an integral variable structure static output feedback controller with an integral-augmented sliding surface is designed for the improved robust control of a uncertain system under unmatched system uncertainty and matched input matrix uncertainty and disturbance satisfying some conditions. To effectively remove the reaching phase problems, an output dependent integral augmented sliding surface is proposed. Its equivalent control and ideal sliding mode dynamics are obtained. The previous some limitations is overcome in this systematic design. A stabilizing control with the closed loop exponential stability is designed for all unmatched system matrix uncertainties and proved together with the existence condition of the sliding mode on S=0. To show the usefulness of the algorithm, a design example and computer simulations are presented.

A Model Reference Variable Structure Control based on a Neural Network System Identification for an Active Four Wheel Steering System

  • Kim, Hoyong;Park, Yong-Kuk;Lee, Jae-Kon;Lee, Dong-Ryul;Kim, Gi-Dae
    • 한국자동차공학회논문집
    • /
    • 제8권6호
    • /
    • pp.142-155
    • /
    • 2000
  • A MIMO model reference control scheme incorporating the variable structure theory for a vehicle four wheel steering system(4WS) is proposed and evaluated for a class of continuous-time nonlinear dynamics with known or unknown uncertainties. The scheme employs an neural network to identify the plant systems, where the neural network estimates the nonlinear dynamics of the plant. By the Lyapunov direct method, the algorithm is proven to be globally stable, with tracking errors converging to the neighborhood of zero. The merits of this scheme is that the global system stability is guaranteed and it is not necessary to know the exact structure of the system. With the resulting identification model which contains the neural networks, it does not need higher degrees of freedom vehicle model than 3 degree of freedom model. Th proposed scheme is applied to the active four wheel system and shows the validity is used to investigate vehicle handing performances. In simulation of the J-turn maneuver, the reduction of yaw rate overshoot of a typical mid-size car improved by 30% compared to a two wheel steering system(2WS) case, resulting that the proposed scheme gives faster yaw rate response and smaller side angle than the 2WS case.

  • PDF

다변수 슬라이딩 모드 제어에 의한 부정합조건 불확실성을 갖는 다입출력 비선형 시스템의 강인그로벌 지수 안정화 (A Robust Global Exponential Stabilization of Uncertain Affine MIMO Nonlinear Systems with Mismatched Uncertainties by Multivariable Sliding Mode Control)

  • 이정훈
    • 전기학회논문지
    • /
    • 제60권9호
    • /
    • pp.1754-1760
    • /
    • 2011
  • In this paper, a systematic design of a robust nonlinear multivariable variable structure controller based on state dependent nonlinear form is presented for the control of MIMO uncertain affine nonlinear systems with mismatched uncertainties and matched disturbance. After a MIMO uncertain affine nonlinear system is represented in the form of state dependent nonlinear system, a systematic design of a robust nonlinear variable structure controller is presented. To be linear in the closed loop resultant dynamics, the linear sliding surface is applied. A corresponding diagonalized control input is proposed to satisfy the closed loop global exponential stability and the existence condition of the sliding mode on the linear sliding surface, which will be investigated in Theorem 1. Through a design example and simulation study, the usefulness of the proposed controller is verified.

최적 가변구조제어기를 갖는 차량 능동 현가시스템의 성능특성에 관한 연구 (Performance characteristics of a vehicle active suspension system with an optimal variable structure controller)

  • 김주용;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1161-1166
    • /
    • 1993
  • The performances of a vehicle active suspension system with an optimal variable structure controller are compared to those of passive suspension system and active suspension systems with sky-hook and optimal controllers. The quater car model has a 2 DOF which accounts for vertical motions of a sprung and a unsprung masses. The transient responses are analyzed when a vehicle passing through a bump with a constant speed and the frequency responses are analyzed for white noise input at wheel. Particulary, RMS responses are also analyzed. It is shown that the optimal variable structure controller gives better performance of the vehicle active suspensio system than an optimal and a sky-hook controller.

  • PDF

입력과 매칭되지 않는 외란을 갖는 시스템에 대한 가변구조제어 (Variable Structure Control for a System with Mismatched Disturbances)

  • 최윤종;박부견
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.149-151
    • /
    • 2007
  • For several decades, VSC has gained much attention as one of the useful design tools for handling the practical system with uncertainties or disturbances. Generally, the disturbances in the matching condition can be perfectly rejected via VSC; however, these in the mismatching condition are known to be hardly rejected. There have been some trials on it, in which the resulting controls in fact belong to the class of robust control guaranteeing disturbance ${\gamma}$-attenuation. Therefore, in this paper, we propose a new Variable Structure Control (VSC) for a system with mismatched disturbances. The proposed controller is composed of linear and nonlinear parts; the former plays a role in stabilizing the system and the latter takes care of attenuating the disturbances. The main contribution is to introduce the concept of switching-zone, rather than switching-surface, that is designed through piece-wise Lyapunov functions. The resulting non-convex conditions are formulated with an iterative linear programming algorithm, which provides an excellent performance of almost rejecting the disturbances.

  • PDF

온수나방 시스템의 디지틀 가변구조제어 (Digital Variable Structure Control for a Hot Water Heating System)

  • 안병천;장효환
    • 설비공학논문집
    • /
    • 제8권1호
    • /
    • pp.65-75
    • /
    • 1996
  • A pilot plant, which is simplified the hot water heating control system of a large scale residential building, is used to investigate the effects of control methods and operating conditions on the system performance and to compare control characteristics. Digital variable structure controller(DVSC) and digital PI controller are implemented to control the speed of the circulating pump for the pilot plant using PC. For the DVSC, a control algorithm is suggested, which using a nonlinear sliding surface and a PID sliding surface outside and inside of output error boundary layer, respectively. Smith predictor algorithm is used for the compensation of long dead time. The suggested DVSC yields improved control performance compared with existing DVSC using linear sliding surface only. the system responses with the suggested DVSC shows good responses without overshoot for various operating conditions and robust under external disturbances compared with digital PI controller.

  • PDF

Variable Structure Control for Discrete-time Nonlinear Systems

  • Han, So-Hee;Cho, Byung-Sun;Park, Kang-Bak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1414-1417
    • /
    • 2003
  • In this paper, sliding mode controller for discrete-time nonlinear systems with uncertainties and disturbances are proposed. The concept of time-delay control (TDC) which consists of estimating the uncertain dynamics of the system through past observations of the system response is used. The proposed controller guarantees that the closed-loop system states are globally uniformly ultimately bounded (GUUB). It is also shown that the closed-loop system states are globally uniformly asymptotically stable (GUAS) if uncertainties are constant.

  • PDF

구동부 동특성을 고려한 가변구조 제어 알고리듬 (A variable structure control algorithm incorporating actuator dynamics)

  • 이정훈;신휘범;차동국;강익호;장명광
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.285-288
    • /
    • 1997
  • In this paper, the dynamics of actuators for generating the input of plants is considered in a design of the variable structure systems. While the input for plants is usually implemented by means of a certain actuator, the actuator dynamics is not incorporated in most of the VSS researches until now. The control algorithm of a VSS incorporating actuator dynamics is presented, and the simulation is given to show the usefulness of the algorithms.

  • PDF

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF