• 제목/요약/키워드: Variable Structure System

검색결과 848건 처리시간 0.029초

Nonlinear, seismic response spectra of smart sliding isolated structures with independently variable MR dampers and variable stiffness SAIVS system

  • Nagarajaiah, Satish;Mao, Yuqing;Saharabudhe, Sanjay
    • Structural Engineering and Mechanics
    • /
    • 제24권3호
    • /
    • pp.375-393
    • /
    • 2006
  • Under high velocity, pulse type near source earthquakes semi-active control systems are very effective in reducing seismic response base isolated structures. Semi-active control systems can be classified as: 1) independently variable stiffness, 2) independently variable damping, and 3) combined variable stiffness and damping systems. Several researchers have studied the effectiveness of independently varying damping systems for seismic response reduction of base isolated structures. In this study effectiveness of a combined system consisting of a semi-active independently variable stiffness (SAIVS) device and a magnetorheological (MR) damper in reducing seismic response of base isolated structures is analytically investigated. The SAIVS device can vary the stiffness, and hence the period, of the isolation system; whereas, the MR damper enhances the energy dissipation characteristics of the isolation system. Two separate control algorithms, i.e., a nonlinear tangential stiffness moving average control algorithm for smooth switching of the SAIVS device and a Lyapunov based control algorithm for damping variation of MR damper, are developed. Single and multi degree of freedom systems consisting of sliding base isolation system and both the SAIVS device and MR damper are considered. Results are presented in the form of nonlinear response spectra, and effectiveness of combined variable stiffness and variable damping system in reducing seismic response of sliding base isolated structures is evaluated. It is shown that the combined variable stiffness and variable damping system leads to significant response reduction over cases with variable stiffness or variable damping systems acting independently, over a broad period range.

Development of 3D scanner using structured light module based on variable focus lens

  • Kim, Kyu-Ha;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • 제8권3호
    • /
    • pp.260-268
    • /
    • 2020
  • Currently, it is usually a 3D scanner processing method as a laser method. However, the laser method has a disadvantage of slow scanning speed and poor precision. Although optical scanners are used as a method to compensate for these shortcomings, optical scanners are closely related to the distance and precision of the object, and have the disadvantage of being expensive. In this paper, 3D scanner using variable focus lens-based structured light module with improved measurement precision was designed to be high performance, low price, and usable in industrial fields. To this end, designed a telecentric optical system based on a variable focus lens and connected to the telecentric mechanism of the step motor and lens to adjust the focus of the variable lens. Designed a connection structure with optimized scalability of hardware circuits that configures a stepper motor to form a system with a built-in processor. In addition, by applying an algorithm that can simultaneously acquire high-resolution texture image and depth information and apply image synthesis technology and GPU-based high-speed structured light processing technology, it is also stable for changes to external light. We will designed and implemented for further improving high measurement precision.

새로운 겔형 생체모방 가변초점 렌즈 시스템 (New Gel-type Biomimetic Variable-focus Lens System)

  • 서정호;손형민;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1082-1088
    • /
    • 2010
  • In this paper, we propose a new gel-type biomimetic variable-focus lens system. The miniaturization of conventional lens system is limited due to the use of a set of glass lenses for adjusting the focal length. Biologically inspired by the focus adjustment mechanism of the human eye, a gel-type single lens system with variable-focus is presented. The proposed system consists of a gel-type lens, mechanical parts such as body, rotation ring, and winding-type SMA actuator. In addition, the proposed system is designed to operate with a simple and miniaturized mechanical structure using a new attachment and driving mechanism. The focusing performance of the proposed system is verified through a series of experiments and measurements of the shape of the lens using tomography.

다변수 가변구조 제어 시스템에서 시변 스위칭 초평면의 새로운 시도 (New Approach of Time-varying Switching Hyperplane in Multivariable Variable Structure Control Systems)

  • 이주장;김종준;김은선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.402-406
    • /
    • 1990
  • A new approach of a time-varying switching hyperplane based on the theory of variable structure system (VSS) is proposed for the control of multivariable systems. While the conventional switching surface can net achieve the robust performance against parameter variations and disturbances before the sliding mode occurs, the proposed switching hyperplane, which is obtained from the eigen-structure assignment theory powerfully used in the linear multivariable systems, ensures the sliding mode from the initial state. And new continuous control input which guarantees the sliding mode is proposed. This new control input does not arise chattering problem which arises with the conventional control input of variable structure control systems. Through numerical examples, the expellant performances of the proposed controller are verified.

  • PDF

차량 능동현가시스템에 대한 강인 제어 해석 (Analysis of an Robust Control for a Vehicle Active Suspension System)

  • 김주용
    • 유공압시스템학회논문집
    • /
    • 제7권3호
    • /
    • pp.20-27
    • /
    • 2010
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. An active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. Therefore, an active suspension system can have even more improved performance. Some control laws have been proposed for active suspension system, but in this paper, an optimal variable structure control(VSC) is proposed. The VSC method is well suited for a class of nonlinear system and can address the robustness issues to constant modelling errors and disturbances. This paper develops an optimal VSC controller and compares its performance to those of a passive suspension system and an active suspension system with an optimal controller. The transient and frequency responses are analyzed respectively.

  • PDF

유도전동기의 위치제어 시스템을 위한 가변구조제어기의 떨림저감 (Chattering Reduction of Variable Structure Controller for Position System of Induction Motor)

  • 김영조;김현중
    • 전자공학회논문지T
    • /
    • 제35T권2호
    • /
    • pp.39-47
    • /
    • 1998
  • 가변구조 제어기는 이론적으로 빠른 응답특성을 가지며 오버슈트가 없고 외란이나 파라미터 변동에 강인한 제어기로 알려져왔다. 그러나 가변구조 제어기는 모델링과정에서 무시된 플랜트의 고주파 동특성을 여기할 수 있고, 또 시스템을 구성하는 소자들에 손상을 줄 수 있는 채터링현상이 발생하기 때문에 산업현장에서 널리 적용되지 못하고 있다. 본 논문에서는 채터링을 저감시키기 위한 개선된 가변구조 제어기를 제안하고 유도전동기의 위치제어에 적용한다. 기존의 가변구조 제어기는 한 개의 스위칭면을 중심으로 고주파 스위칭을 행하여 시스템의 구조를 절환한 반면에, 개선된 가변구조 제어기는 한 개의 면 대신 슬라이딩 영역을 이루기 위해 두 개의 스위칭면을 가지며 이 영역 내에서 저주파 스위칭으로써 시스템 구조를 절환하게 된다. 그러므로 제안된 알고리즘은 기존의 가변구조 제어기가 가지는 빠른 응답성이나 강인성을 유지하면서 고주파 채터링을 저감시키는 특징을 가지며 전동기정수 변동에도 양호하게 동작하고 있다. 제안하는 제어기의 타탕성을 확인하기 위해 실험을 행하였다.

  • PDF

바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어 (A Position Control of Brushless DC Motor for Power Installation with Binary Control)

  • 유완식;조규민;김영석
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제9권4호
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

An Integral-Augmented Nonlinear Optimal Variable Structure System for Uncertain MIMO Plants

  • Lee, Jung-Hoon
    • 전기전자학회논문지
    • /
    • 제11권1호통권20호
    • /
    • pp.1-14
    • /
    • 2007
  • In this paper, a design of an integral augmented nonlinear optimal variable structure system(INOVSS) is presented for the prescribed output control of uncertain MIMO systems under persistent disturbances. This algorithm basically concerns removing the problems of the reaching phase and combining with the nonlinear optimal control theory. By means of an integral nonlinear sliding surface, the reaching phase is completely removed. The ideal sliding dynamics of the integral nonlinear sliding surface is obtained in the form of the nonlinear state equation and is designed by using the nonlinear optimal control theory, which means the design of the integral nonlinear sliding surface and equivalent control input. The homogeneous $2{\upsilon}(\kappa)$ form is defined in order to easily select the $2{\upsilon}$ or even $(\kappa)-form$ higher order nonlinear terms in the suggested sliding surface. The corresponding nonlinear control input is designed in order to generate the sliding mode on the predetermined transformed new surface by means of diagonalization method. As a result, the whole sliding output from a given initial state to origin is completely guaranteed against persistent disturbances. The prediction/predetermination of output is enable. Moreover, the better performance by the nonlinear sliding surface than that of the linear sliding surface can be obtained. Through an illustrative example, the usefulness of the algorithm is shown.

  • PDF

불확실 다변수 시스템을 위한 적분 슬라이딩 면을 갖는 다입출력 가변 구조 제어기 (A MIMO VSS with an Integral-Augmented Sliding Surface for Uncertain Multivariable Systems)

  • 이정훈
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.950-960
    • /
    • 2010
  • In this paper, a multi-input multi-output(MIMO) integral variable structure system with an integral-augmented sliding surface is designed for the improved robust control of uncertain multivariable system under the matched persistent disturbance. To effectively remove the reaching phase problems, the integral augmented sliding surface is proposed. Then for its design, the eigenstructure assignment technique is introduced to. To guarantee the designed performance against the persistent disturbance, the stabilizing control for multi-input system is also designed to generate the sliding mode on the integral sliding surface. The stability of the global system together with the existence condition of the sliding mode are investigated and proved for the case of multi input system in the presence of uncertainty and disturbance. The reaching phase is completely removed in proposed MIMO VSS by satisfying the two requirements. An example and computer simulations will be present for showing the usefulness of algorithm.

가변구조 이론에 의한 로보트 팔의 추종제어에 관한 연구 (I) (A Study on the tracking control of a robot manipulator using variable structure systems (I))

  • 이진걸
    • 한국정밀공학회지
    • /
    • 제2권1호
    • /
    • pp.41-52
    • /
    • 1985
  • This study is a step in developing the sliding mode control methodology for the robust control of a class of nonlinear time-varying systems. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory "sliding" slong a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment with noise. The result through simulation is that the tracking problem of articular robot with high precision can be realized by using the variable structure system (VSS) theory. The motions of articular robot were insensitive to various payloads. payloads.

  • PDF