• 제목/요약/키워드: Variable Statistics

Search Result 1,353, Processing Time 0.03 seconds

ESTIMATING THE CORRELATION COEFFICIENT IN A BIVARIATE NORMAL DISTRIBUTION USING MOVING EXTREME RANKED SET SAMPLING WITH A CONCOMITANT VARIABLE

  • AL-SALEH MOHAMMAD FRAIWAN;AL-ANANBEH AHMAD MOHAMMAD
    • Journal of the Korean Statistical Society
    • /
    • 제34권2호
    • /
    • pp.125-140
    • /
    • 2005
  • In this paper, we consider the estimation of the correlation coefficient in the bivariate normal distribution, based on a sample obtained using a modification of the moving extreme ranked set sampling technique (MERSS) that was introduced by Al-Saleh and Al-Hadhrami (2003a). The modification involves using a concomitant random variable. Nonparametric-type methods as well as the maximum likelihood estimation are considered under different settings. The obtained estimators are compared to their counterparts that are obtained based simple random sampling (SRS). It appears that the suggested estimators are more efficient

THE CALIBRATION ESTIMATION USING TWO-STEP NEWTON'S ALGORITHM IN TWO-PHASE SAMPLING

  • Son, Chang-Kyoon;Yum, Joon-Keun
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.237-245
    • /
    • 2000
  • In this paper, we consider to the adjustment weighting procedure in the two phase sampling scheme. In general, the unit nonresponses may be occured in the final survey operation. When the unit nonresponse be generated in survey, it is able to use the auxiliary variable for estimating of interest variable. In this viewpoint, we use the two kinds level of auxiliary variable, $X_{1k}$ and $X_{2k}$ for the calibration procedure. We proprose the two-step Newton's method in the calibration estimation procedure for the two phase sampling.

Input Variable Importance in Supervised Learning Models

  • Huh, Myung-Hoe;Lee, Yong Goo
    • Communications for Statistical Applications and Methods
    • /
    • 제10권1호
    • /
    • pp.239-246
    • /
    • 2003
  • Statisticians, or data miners, are often requested to assess the importances of input variables in the given supervised learning model. For the purpose, one may rely on separate ad hoc measures depending on modeling types, such as linear regressions, the neural networks or trees. Consequently, the conceptual consistency in input variable importance measures is lacking, so that the measures cannot be directly used in comparing different types of models, which is often done in data mining processes, In this short communication, we propose a unified approach to the importance measurement of input variables. Our method uses sensitivity analysis which begins by perturbing the values of input variables and monitors the output change. Research scope is limited to the models for continuous output, although it is not difficult to extend the method to supervised learning models for categorical outcomes.

Penalized variable selection for accelerated failure time models

  • Park, Eunyoung;Ha, Il Do
    • Communications for Statistical Applications and Methods
    • /
    • 제25권6호
    • /
    • pp.591-604
    • /
    • 2018
  • The accelerated failure time (AFT) model is a linear model under the log-transformation of survival time that has been introduced as a useful alternative to the proportional hazards (PH) model. In this paper we propose variable-selection procedures of fixed effects in a parametric AFT model using penalized likelihood approaches. We use three popular penalty functions, least absolute shrinkage and selection operator (LASSO), adaptive LASSO and smoothly clipped absolute deviation (SCAD). With these procedures we can select important variables and estimate the fixed effects at the same time. The performance of the proposed method is evaluated using simulation studies, including the investigation of impact of misspecifying the assumed distribution. The proposed method is illustrated with a primary biliary cirrhosis (PBC) data set.

A two-step approach for variable selection in linear regression with measurement error

  • Song, Jiyeon;Shin, Seung Jun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권1호
    • /
    • pp.47-55
    • /
    • 2019
  • It is important to identify informative variables in high dimensional data analysis; however, it becomes a challenging task when covariates are contaminated by measurement error due to the bias induced by measurement error. In this article, we present a two-step approach for variable selection in the presence of measurement error. In the first step, we directly select important variables from the contaminated covariates as if there is no measurement error. We then apply, in the following step, orthogonal regression to obtain the unbiased estimates of regression coefficients identified in the previous step. In addition, we propose a modification of the two-step approach to further enhance the variable selection performance. Various simulation studies demonstrate the promising performance of the proposed method.

frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료 (Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data)

  • 김보현;하일도;노맹석;나명환;송호천;김자혜
    • 응용통계연구
    • /
    • 제28권5호
    • /
    • pp.965-976
    • /
    • 2015
  • 통계적 모형에서 적절한 변수를 선택하는 것은 회귀분석에서 매우 중요하다. 최근 벌점 함수(예: LASSO 및 SCAD)와 함께 벌점화 가능도를 사용하는 변수 선택 방법들이 선형모형 및 일반화 선형모형과 같은 단순한 통계 모형에서 널리 연구되고 있다. 이러한 방법들의 주요 장점은 중요한 변수를 선택하고 동시에 회귀계수를 추정하는 것이다. 그러므로 이 방법들은 0으로 회귀계수를 추정함으로써 중요하지 않은 변수를 삭제한다. 이 논문에서는 콕스 비례 위험 모형의 한 확장인 준 모수적 프레일티 모형에서 벌점화된 다단계 가능도(h-likelihood; HL)를 기반으로 적절한 변수를 선택하는 방법을 연구한다. 이를 위해 세 가지 벌점 함수 LASSO, SCAD 및 HL을 사용한다. 본 논문에서는 변수선택을 효율적으로 하기 위해 "frailtyHL" R 패키지 (Ha 등, 2012)를 기반으로 하여 새로운 함수를 개발하였다. 개발된 방법의 예증을 위해 전남대 의과대학 병원에서 수집된 유방암 생존자료를 이용하여 세 가지 변수 선택 방법의 결과를 비교하고, 이 변수선택방법들의 상대적 장 단점에 대해 토론한다.

연속확률분포의 정의와 도입 방법에 대한 2009개정 교육과정과 2015개정 교육과정의 비교 분석 연구 (A comparative analysis of the 2009-revised curriculum and 2015-revised curriculum on the definition and introduction of continuous probability distribution)

  • 허남구
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권4호
    • /
    • pp.531-543
    • /
    • 2019
  • 본 연구는 2009개정 교육과정과 2015개정 교육과정을 반영한 교과서에서 연속확률분포를 정의하고 도입하는 방법에 대해 비교 분석하였다. 2015개정 교육과정을 반영한 확률과 통계 교과서는 연속확률변수를 가부번집합인 확률변수로 정의하기보다는 특정 범위의 모든 실숫값을 가지는 확률변수로 정의하였다. 또한 연속확률분포를 도입함에 있어 균등분포를 이용한 방법과 상대도수밀도를 이용한 방법을 사용하였다.

Variable Selection Criteria in Regression

  • Kim, Choong-Rak
    • Journal of the Korean Statistical Society
    • /
    • 제23권2호
    • /
    • pp.293-301
    • /
    • 1994
  • In this paper we propose a variable selection criterion minimizing influence curve in regression, and compare it with other criteria such as $C_p$(Mallows 1973) and adjusted coefficient of determination. Examples and extension to the generalized linear models are given.

  • PDF

On Reliability and UMVUE of Right-Tail Probability in a Half-Normal Variable

  • Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.259-267
    • /
    • 2007
  • We consider parametric estimation in a half-normal variable and a UMVUE of its right-tail probability. Also we consider estimation of reliability in two independent half-normal variables, and derive k-th moment of ratio of two same variables.

  • PDF

하이브리드 수의 조건부 기대값 (Conditional Expectation of Hybrid Number)

  • ;최규탁;한성일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.18-21
    • /
    • 2003
  • We propose some properties of fuzzy conditional expectation of hybrid number the addition of fuzzy number and random variable using Cartesian product distance for ${\alpha}$-level sets.

  • PDF