• Title/Summary/Keyword: Variable Speed Control

Search Result 902, Processing Time 0.028 seconds

Anti-windup Integral-Proportional Controller for Variable-Speed Motor Drives

  • Park, Jong-Gyu;Chung, Jae-ho;Shin, Hwi-Beom
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.130-138
    • /
    • 2002
  • The windup phenomenon appears and degrades control performance when a controller with integrating action is used and plant input is limited. An anti-windup integal-proportional(IP) controller is proposed for the variable-speed moter drives and it is experimentally applied to the speed control of a vector-controlled induction moter driven by a pulse width modulated (PWM) voltage source inverter (VSI). The consistency range of the IP controller is firstly derived and the intergal state is controlled to salisfy always the consistency range according to whether the the controller output is saturated or not. Although the operating condition like moter load or speed command is changed under the limited plant input, It is expermentally verified that the speed response has much improved performance, such as no overshoot and fast settling time, and the maximmum plant input is also effectively utilized.

Flow Compensating Characteristics for the Speed Variation of a Boom Sprayer (붐방제기용 주행속도 보상식 유량제어부의 동특성)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • v.23 no.2
    • /
    • pp.115-124
    • /
    • 1998
  • Over- and under-application of pesticides to crops have recently become main concerns regarding the environment conservation, product cost and firmer's safety. Thus, a uniform and optimal application method of pesticides was needed. The objective of study was to evaluate flow compensating characteristics of a variable flow control system for a boom sprayer using a laboratory setup. At the most variable conditions, the control system was acceptable with the flowrate control strategy. However, the sprayer control system became unstably fluctuating at the long execution time with small tolerance because of the constant valve on-time. This problem was solved by employing a variable on-time control. The optimal values for the damping ratio and the execution time were 2 and 1.0 sec, respectively, with the tolerances less than 3%. The performance of the control system at the optimal conditions were the response time of 3.8sec and the absolute steady-state error of 0.5% with the stable RCV and ROS ( < 1.0).

  • PDF

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

Stabilization of Fixed Speed Wind Generator by using Variable Speed PM Wind Generator in Multi-Machine Power System

  • Rosyadi, Marwan;Takahashi, Rion;Muyeen, S.M.;Tamura, Junji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • This paper present stabilization control of fixed speed wind generator by using variable speed permanent magnet wind generator in a wind farm connected with multi-machine power system. A novel direct-current based d-q vector control technique of back to back converter integrated with Fuzzy Logic Controller for optimal control configuration is proposed, in which both active and reactive powers delivered to a power grid system are controlled effectively. Simulation analyses have been performed using PSCAD/EMTDC. Simulation results show that the proposed control scheme is very effective to enhance the voltage stability of the wind farm during fault condition.

High precision position synchronous control in a multi-axes driving system (II) (다축 구동 시스템의 정밀 위치동기 제어(II))

  • 양주호;변정환;김영복;정석권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.3
    • /
    • pp.98-106
    • /
    • 1997
  • In this paper, a new method of position synchronizing control is proposed for multi-axes driving system. The proposed position synchronizing control system is constituted with speed and synchronizing controller. The speed controller is aimed at the following to speed reference. Furthermore, it is designed to guarantee low sensitivity under some disturbance as well as robustness against model uncertainties using $H_{\infty}$technique. The synchronizing controller is designed to keep minimizing the position error using PID control law which is considered to reduce the dimension of transfer function in the control system. Especially, the proposed method can be easily conducted by controlling only slave axis speed, because it, has variable structure which is decided to master and slave axis by the sign of synchronizing error. Therfore, the master axis which is smaller influenced than another axes by disturbance can be controlled without reducing or increasing its speed for precise position synchronization. The effectiveness of the proposed method is sucessfully confirmed through many experiments.s.

  • PDF

Comparison of System Performances of Hot-gas Bypass and Compressor Variable Speed Control of Water Coolers for Machine Tools (핫가스 바이패스 및 압축기 가변속 제어에 의한 공작기계용 수냉각기의 성능 비교)

  • Jeong, Seok-Kwon;Lee, Dan-Bi;Yoon, Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, the needs of system performances such as working speed and processing accuracy in machine tools have been increased. Especially, the speed increment generates harmful heat at both moving part of the machine tools and handicrafts. The heat is a main drawback to progress accuracy of the processing. Hence, a cooler system to control temperature is inevitable for the machine tools. In general, two representative control schemes, hot-gas bypass and variable speed control of a compressor, have been adopted in the water cooler system. In this paper, comparisons of system performances according to the control schemes in a cooler for machine tools were conducted in detail. Each proportional-integral feedback controller for the two different control systems is designed. The system performances, especially the temperature control accuracy and coefficient of performance which is a criterion of energy saving, were mainly analyzed through various experiments using 1RT water cooler system with different two types of control scheme. These evaluations will provide useful information to choose suitable water cooler system for the engineers who design controllers of the cooler system for machine tools.

The design of variable structure controller for the systems having the first order dynamic (일차 dynamic을 갖는 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최중경;강윤관
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.179-184
    • /
    • 1991
  • This paper will describe the application for variable structure control theory to the first order dynamic system and verify it's robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC, DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which regards as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

  • PDF

Speed control of a hydrostatic transmission with efficiencies considered (HST의 효율을 고려한 속도제어)

  • 전윤식;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1188-1193
    • /
    • 1993
  • For the HST(Hydrostatic Transmission) consisted of a variable displacement axial piston pump and motor, a speed controller with efficiencies considered is proposed. To consider a efficiency in speed control, the displacements of pump and motor which maximize a steady state efficiencies with a various load torque are calculated through computer simulation and these results are reflected to speed controller which has PI control structure with cross over control scheme. It is shown through computer simulation that the proposed controller gives better steady state efficiencies compared with the conventional controller and good transient responses.

  • PDF

The Design of Variable Structure Controller for the Systems Having the First Order Dynamic (일차 Dynamic을 갖는 계통에 대한 가변구조 제어기의 설계)

  • 박귀태;최종경;김동식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.392-399
    • /
    • 1992
  • This paper will describe the application of variable structure control theory to the first order dynamic system and verify its robustness. The study on the first order dynamic system control which has been essential part for the control of servo motor (AC,DC) systems has been excluded in the study of variable structure control system(VSCS) because this first order system was not applicable to the previous variable structure control theory. So, for the robustness control of first order dynamic system with variable structure control theory, we propose modified switching function synthesis which guarantees the advantages of conventional VSCS and removes reaching phase which is regarded as shortcomings in VSCS. And we demonstrate the practical potential of implementation about this theory by simulation results of AC motor variable speed control.

Dynamic Characteristic Analysis of a Wind Turbine Depending on Varying Operational Conditions (작동 조건 변화에 따른 풍력발전 시스템의 동적 특성 해석)

  • Nam, Yoon-Su;Yoon, Tai-Jun;Yoo, Neung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • A design methodology for control strategy and control structure gives a direct impact on wind turbine's performance and life cycle. A baseline control law which is a variable rotor speed and variable pitch control strategy is introduced, and a mathematic performance model of a wind turbine dynamics is derived. By using a numeric optimization algorithm, the steady state operating conditions of wind turbines are identified. Because aerodynamic interaction of winds with rotor blades is basically nonlinear, a linearization procedure is applied to analyze wind turbine dynamic variations for whole operating conditions. It turns out the wind turbine dynamics vary much depending on its operating condition.