• Title/Summary/Keyword: Variable Frame Structure

Search Result 75, Processing Time 0.025 seconds

Optimal Design to minimize Eddy Current Loss of Structure Part in Electrical Machines using Topology Optimization (위상최적화를 이용한 전기기기 구조부의 와전류손을 줄이는 최적설계)

  • Lee, Heon;Shim, Ho-Kyung;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.655-656
    • /
    • 2008
  • This research presents a topology optimization to minimize eddy current loss maintaining mechanical robustness of structure part in electrical machines A design sensitivity equation for the topology optimization is derived by employing the discrete system equations combined with the adjoint variable method. As a numerical example, frame design of a C-core actuator is performed by the proposed method.

  • PDF

Development of the Optimum Structural Components Model for the Prefabricated Rural House using the Light Gauge Cold-Formed Steel Frame (경량형강을 이용한 조립식 농촌주택의 최적 구조요소 모델 개발)

  • 정남수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.4
    • /
    • pp.66-76
    • /
    • 1999
  • In this study , the optimum structural components for the rural house design using the light gauge cold-formed steel frame is proposed. The proposed components were optimzed by the developed model composed with the analysis model and LGC database. The analysis model adapts FEA(finite element analysis). LGC database and calculation of element force adapt the design criteria of KISC. The structure of house is divided into header, bearing wall and foof truss. The variable of the each structure of house are defined component which designed by the case of load, aize and space. The designed weight were used for optimization procedure of the divided components.

  • PDF

Position Control of Induction Motor using Variable Structure Vector Control (가변구조 벡터제어를 이용한 유도전동기의 위치제어)

  • Lee, Y.J.;Kim, H.J.;Son, Y.D.;Kwon, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1218-1220
    • /
    • 1992
  • This paper presents the three section sliding mode control algorithm based on variable structure current controller design in a synchronous frame and indirect field oriented control method, and applies it to the position control of induction motor. This control scheme solves the problem of robustness loss during the reaching phase that occurs in a conventional VSC strategy, and ensures the stable sliding mode and robustness enhancement throughout an entire response. As the performance of a VSI fed induction motor drives depends on the characteristics of inner loop current controller, it is desired that the current controller have the fast tracking and robust nature. Therefore, we introduced the voltage mapping table based on the concept of voltage space vector for variable structure current control, and implemented fully digital control system using 16-bit microcontroller with on-chip peripherals without additional processing circuits. Simulation and experimental results confirm the validity of this control scheme for robust AC servo drive system of VSI fed induction motor.

  • PDF

The Research and Application of Innovative High Efficient Construction Technologies in Super High Rise Steel Structure Building

  • Dai, Lixian;Liao, Biao
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • The super high rise building construction is characterized by a large quantity of engineering works and structural components, high demanding of construction technology and complex cross operations. As the height of super high rise building increases, the construction difficulties increase, it is challenging the steel structural building construction technology. In this paper, the key technologies in the construction of Chinese modern super high rise steel structure building have been studied. The innovative tower crane supporting frame suspension disassembly technology has been developed to allow the crane supporting frame to turnover in the air without occupying materials stockyard. A new self-elevating platform technique which is capable of striding over structural barriers has been developed. This new technology allows the platform to be self-elevated along variable cross section column with a maximum 600 mm size change. A new automatic submerged arc welding technology has also been developed to ensure the process continuity and quality stability of welding job on the construction site.

An Efficient Smoothing Algorithm Using the Change of Frame Sequence in GOP (GOP를 구성하는 프레임들의 순서 변경을 이용한 효율적인 스무딩 알고리즘)

  • Lee, Myoun-Jae
    • Journal of Korea Game Society
    • /
    • v.6 no.2
    • /
    • pp.51-60
    • /
    • 2006
  • Smoothing is a transmission plan where variable rate video data is converted to a constant bit rate stream. Among them are CBA, MCBA, MVBA, PCRTT and others. But, in these algorithm, a transmission plan is made in according to stored frame sequence in these algorithms. In case that the number of bytes in frames in GOP differs greatly each other, this may cause unnecessary transmission rate changes and may require high transmission rates abruptly when frame's byte is large. In result, it is difficult to use efficient network resource. In this paper, we proposed a smoothing algorithm that find the optimal frame sequence in short time by using backtracking method and smoothing's structure for the proposed smoothing algorithm. This algorithm decides the sequence of frames which requires the lowest variance of frame's bytes in GOP and make a transmission plan. In order to show the performance, we compared with MVBA algorithm by various evaluation factors such as the number of rate changes, peak rate, rate variability.

  • PDF

Current Control of Inverter-Fed Induction Motor Using Integral Variable Structure Control (적분형 가변구조 제어를 이용한 인버터 구동 유도전동기의 전류제어)

  • Chung, Se-Kyo;Lee, Jung-Hoon;Park, Jae-Woo;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.270-272
    • /
    • 1994
  • A new current control technique for inverter-fed vector controlled induction motor drives is presented. Using a integral variable structure control(IVSC) approach, the current controller is designed in the stationary rotating reference frame. The chattering reduction technique is also considered by the full state flux observer. By employing the proposed control scheme, a good control performance is achieved in the transient and steady state. The effectiveness of the proposed scheme is demonstrated through the comparative simulations.

  • PDF

The Design of Sliding Mode Controller with Sliding Perturbation Observer for a Robust Control of Stewart Platform Manipulator (스튜어트 플랫폼의 견실제어를 위한 슬라이딩 섭동 관측기를 갖는 슬라이딩 모드 제어기 개발)

  • You, Ki-Sung;Park, Min-Kyu;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.639-648
    • /
    • 2002
  • The stewart platform manipulator is a manipulator that has the closed-loop structure with an upper plate end-effector and a base frame. The stewart platform manipulator has the merit of high working accuracy and high stiffness compared with a serial manipulator. However, this is a complex structure, so controllability of the system is not so good. In this paper, we introduce a new robust motion control algorithm using partial state feedback for a class of nonlinear systems in the presence of modelling uncertainties and external disturbances. The major contribution of this work introduces the development and design of robust observer for the state and the perturbation, which is integrated into a variable structure controller(VSC) structure. The combination of controller/observer improves the control performance, because of the robust routine called sliding mode control with sliding perturbation observer(SMCSPO). Simulation and experiment are performed to apply to the manipulator. And their results show a high accuracy and a good performance.

Developing a smart structure using integrated DDA/ISMP and semi-active variable stiffness device

  • Karami, Kaveh;Nagarajaiah, Satish;Amini, Fereidoun
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.955-982
    • /
    • 2016
  • Recent studies integrating vibration control and structural health monitoring (SHM) use control devices and control algorithms to enable system identification and damage detection. In this study real-time SHM is used to enhance structural vibration control and reduce damage. A newly proposed control algorithm, including integrated real-time SHM and semi-active control strategy, is presented to mitigate both damage and seismic response of the main structure under strong seismic ground motion. The semi-active independently variable stiffness (SAIVS) device is used as semi-active control device in this investigation. The proper stiffness of SAIVS device is obtained using a new developed semi-active control algorithm based on real-time damage tracking of structure by damage detection algorithm based on identified system Markov parameters (DDA/ISMP) method. A three bay five story steel braced frame structure, which is equipped with one SAIVS device at each story, is employed to illustrate the efficiency of the proposed algorithm. The obtained results show that the proposed control algorithm could significantly decrease damage in most parts of the structure. Also, the dynamic response of the structure is effectively reduced by using the proposed control algorithm during four strong earthquakes. In comparison to passive on and off cases, the results demonstrate that the performance of the proposed control algorithm in decreasing both damage and dynamic responses of structure is significantly enhanced than the passive cases. Furthermore, from the energy consumption point of view the maximum and the cumulative control force in the proposed control algorithm is less than the passive-on case, considerably.

Development of Drift Design Method of High-rise buildings considering Material Properties of Shear Walls and Design Variable Linking Strategy (RC 전단벽의 재료 물성과 부재 그룹핑을 고려한 고층건물 변위조절설계법 개발)

  • 서지현;박효선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.487-494
    • /
    • 2004
  • Resizing techniques have been recognized as practical methods for drift design of high-rise building since sensitivity analysis and iterative structural analysis are not required in implementation. In the techniques, the amount of material of a memberin a building for resizing is determined in terms of cross-sectional areas and sectional inertia moments as design variables. In this study, five drift design methods are developed by considering design variable linking strategy and fomulating resizing algorithm in terms of material properties of shear walls as a design variable. The developed methods are applied to the drift design of 20-story frame-RC shear wall structure, and then evaluated in the view points of practicality and efficiency.

  • PDF

Structural identification based on incomplete measurements with iterative Kalman filter

  • Ding, Yong;Guo, Lina
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1037-1054
    • /
    • 2016
  • Structural parameter evaluation and external force estimation are two important parts of structural health monitoring. But the structural parameter identification with limited input information is still a challenging problem. A new simultaneous identification method in time domain is proposed in this study to identify the structural parameters and evaluate the external force. Each sampling point in the time history of external force is taken as the unknowns in force evaluation. To reduce the number of unknowns for force evaluation the time domain measurements are divided into several windows. In each time window the structural excitation is decomposed by orthogonal polynomials. The time-variant excitation can be represented approximately by the linear combination of these orthogonal bases. Structural parameters and the coefficients of decomposition are added to the state variable to be identified. The extended Kalman filter (EKF) is augmented and selected as the mathematical tool for the implementation of state variable evaluation. The proposed method is validated numerically with simulation studies of a time-invariant linear structure, a hysteretic nonlinear structure and a time-variant linear shear frame, respectively. Results from the simulation studies indicate that the proposed method is capable of identifying the dynamic load and structural parameters fairly accurately. This method could also identify the time-variant and nonlinear structural parameter even with contaminated incomplete measurement.