• 제목/요약/키워드: Variable Displacement

검색결과 496건 처리시간 0.021초

Influence of variable thermal conductivity on waves propagating through thermo-elastic medium

  • Abo-Dahab, Sayed M.;Jahangir, Adnan;Dar, Adiya
    • Structural Engineering and Mechanics
    • /
    • 제82권4호
    • /
    • pp.459-467
    • /
    • 2022
  • We investigated the influence of variable thermal conductivity on waves propagating through the elastic medium. Infinitesimal deformation results in generation of thermal signal, and is analyzed by using dual phase lag heat (DPL) conduction model. The medium considered is homogenous, isotropic and bounded by thermal shock. The elastic waves propagating through the medium are considered to be harmonic in nature, and expressions for the physical variables are obtained accordingly. Analytically, we obtained the expressions for displacement components, temperature, micro-temperature component and stresses. The theoretical results obtained are computed graphically for the particular medium by using MATLAB.

생체 센서 시스템을 동작하는 동안 홈 네트워크 시스템의 알고리즘 구현 (Implementation of Algorithm for home network during a bio-sensor system activities)

  • 김정래;권영만
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.31-37
    • /
    • 2010
  • 본 논문은 홈 케어를 위해 생체 센서 시스템으로 홈 네트워크 시스템을 구성하여 생체 신호가 전달되도록 생체 신호 알고리즘을 구현하였다. 알고리즘의 구성 조건은 입력함수, 주파수 변화 함수, 변위 점 산출 발생 함수, 위치 변동 축 발생 함수, 축 변화 흔들림 변위(Sway Displacement)의 함수에서 변위치의 최대 값과 최소 값을 기준에 조정할 수 있는 단계로 주파수 변동이 0.01 단위로 변화가 있도록 조정하였다. 산출되는 항목은 맥박(Heart Rate), 체온(Temperature), 체중(Weight) 로 구성되고, 파형으로 신체적 균형정도를 확인하고 건강의 상태를 확인하도록 의미를 부여하였다. 본연구의 결과로 홈 네트워크를 통해 헬스 센터 및 건강관리 중앙 시스템에 단말기를 통해 전송된 알고리즘으로 홈 내 건강 관리시스템이 진행되는 결과를 얻을 수 있고, 다양한 신체적 파라메타를 통한 모니터링 기능을 갖춘 시스템관리가 형성 될 것으로 예상된다.

영상 인식을 위한 2차원 자동 변형 템플릿 매칭 (Two-dimensional Automatic Transformation Template Matching for Image Recognition)

  • 한영모
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.1-6
    • /
    • 2019
  • 영상 인식을 위한 한 방법으로 템플릿 매칭이 있다. 기존의 템플릿 매칭에서는 주어진 매칭 영상 내에서 템플릿의 2차원 이동 변위를 바꿔가면서 블록 매칭 알고리즘(BMA)을 수행한다. 이 블록 매칭 알고리즘 수행 중에 템플릿의 크기와 모양은 바뀌지 않는다. 그리고 각각의 2차원 이동변위에 해당하는 블록에서 유사성 척도(similarity measure)로 계산된 매칭 에러 값을 비교하여 대상 체의 위치를 결정한다. 2차원 이동변위만 고려하기 때문에 템플릿과 매칭 영상에서 대상 체의 크기와 방향이 일치하지 않으면 성공률이 떨어진다. 반면 본 논문의 경우는 템플릿의 2차원 방향과 크기를 조정하는 변수를 새로이 추가하고 각각의 2차원 이동 변위에 해당하는 블록에서 이 변수의 최적 값이 자동으로 계산된다. 이렇게 계산된 최적 값을 사용하여, 각 블록에 최적인 템플릿으로 자동 변형된다. 그리고 자동 변형된 템플릿을 기준으로 각 블록의 매칭 에러 값이 계산된다. 이렇게 방향과 크기 차이가 보정된 각 블록의 매칭 에러 값들을 비교하여 대상 체의 위치를 결정한다. 따라서 방향과 크기 차이에 대해 좀 더 안정적인 결과 값을 얻을 수 있다. 사용의 편의를 위해서, 알고리즘을 템플릿 영상 외에 추가의 정보, 예를 들면, 거리정보를 필요로 하지 않는 닫힌 형태로 설계하는 데 주력한다.

Semi-active eddy current pendulum tuned mass damper with variable frequency and damping

  • Wang, Liangkun;Shi, Weixing;Zhou, Ying;Zhang, Quanwu
    • Smart Structures and Systems
    • /
    • 제25권1호
    • /
    • pp.65-80
    • /
    • 2020
  • In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAEC-PTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAEC-PTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • 제33권6호
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

EFFICIENT SCREWING : last developments and Korean experience

  • Ines MEYUS;Maurice Bottiau;Myung-Whan Lee;Jong-Bae Park;Yong-Boo Park
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.405-414
    • /
    • 1999
  • The auger and screw piles have known an important evolution during the last decade. Besides the large success of augercast (CFA) piling systems, new systems have been developed combining, to a variable extent, the classical extraction auger with especially designed displacement tools in order to develop screw piles with partial or total lateral soil displacement. These last developments cover the whole range of lateral soil displacement and are more difficult than ever to compare. The authors present the latest evolutions in auger piling systems and compare them with respect to penetration performances, bearing capacities and amount of spoil generated. A special focus is given to a new efficient system: the OMEGA(H) pile in use in Korea since 1997. The results of the Hongcheon site are presented where this R system was applied for a new investment of the Korean National Housing Corporation (KNHC). This first important experience, with the execution of some 1,500 Omega piles with diameter 410 mm, is presented. The piles were installed through loose silty sands down to very dense sands and layers of gravel. The results of full-scale load tests are analysed and show the conformity with requirements of the clients.

  • PDF

Degradation and damage behaviors of steel frame welded connections

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing;Xiong, Jun;Chen, Hong
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.357-377
    • /
    • 2013
  • In order to study the degradation and damage behaviors of steel frame welded connections, two series of tests in references with different connection constructions were carried out subjected to various cyclic loading patterns. Hysteretic curves, degradation and damage behaviours and fatigue properties of specimens were firstly studied. Typical failure modes and probable damage reasons were discussed. Then, various damage index models with variables of dissipative energy, cumulative displacement and combined energy and displacement were summarized and applied for all experimental specimens. The damage developing curves of ten damage index models for each connection were obtained. Finally, the predicted and evaluated capacities of damage index models were compared in order to describe the degraded performance and failure modes. The characteristics of each damage index model were discussed in depth, and then their distributive laws were summarized. The tests and analysis results showed that the loading histories significantly affected the distributive shapes of damage index models. Different models had their own ranges of application. The selected parameters of damage index models had great effect on the developing trends of damage curves. The model with only displacement variable was recommended because of a more simple form and no integral calculation, which was easier to be formulated and embedded in application programs.

주성분 분석기법을 적용한 사면 계측데이터 평가 (Slope Displacement Data Estimation using Principal Component Analysis)

  • 정수정;김용수;안상로
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 춘계 학술발표회
    • /
    • pp.1358-1365
    • /
    • 2010
  • Estimating condition of slope is difficult because of nonlinear time dependency and seasonal effects, which affect the displacements. Displacements and displacement patterns of landslides are highly variable in time and space, and a unique approach cannot be defined to model landslide movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. In the non-parametric approaches, no physical assumptions of target systems are required. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, non-parametric approaches are advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured. Non-parametric approaches are consequently more flexible in modeling than parametric approaches. This method is expected to be a useful tool for the slope management of and alarm systems.

  • PDF