• Title/Summary/Keyword: Variable Displacement

Search Result 495, Processing Time 0.022 seconds

Environmental Stress on the Displacement Sensor for Infrastructure (현장계측용 변위계의 환경영향 특성연구)

  • 이한준;최만용;박정학;임재학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.114-121
    • /
    • 2004
  • The sensor and measuring instrument that are used for the infrastructure is discussed the reliability problem from the various environment factors. In the domestic infrastructure, the low reliability products are produced, because of lack of the pertinent test methods and equipments. To improve the practical use and accuracy of the sensor, it raises the measurement reliability about the sensor and measurement instrument. In this study, the variance of the displacement value according to temperature was investigated using the LVDT for the infrastructure. The experimental results showed that a sensor is affected by environment factor such as temperature.

  • PDF

Motion Control of Inch-worm (이송자벌레의 운동제어)

  • Yun, Jae-Heon;Kim, Yeong-Sik;Kim, In-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.179-185
    • /
    • 2002
  • Solid state deformation of PZT is effective for the micron scale displacement. Inch-worm gets large linear displacement by incrementally summing displacements of PZT actuators. Dynamic stiffness of inch-worm is generally low compared to its driving condition due to the small size and light weight of inch-worm. Mechanical vibration induced by low stiffness may degenerate the motion accuracy of the inch-worm. In this paper, dynamic characteristics of the inch-worm are modeled by using the frequency domain curve fitting based on the experimental frequency response function. SMC (sliding mode control) is examined for motion control of the inch-worm. Simulation and experimental results show that the inch-worm with SMC scheme is feasible for the precise displacement device.

풍력 블레이드의 전단 웹 모양의 최적화를 위한 구조 해석에 대한 연구

  • Kim, Jin-Myeong;Song, Seong-Il
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.217-222
    • /
    • 2015
  • In this paper, a study was conducted for the optimization through shear web of shape the Edison program in wind power blade. We measured the displacement and stress distribution through two optimization methods to select the model with the smallest displacement and stress values. Before running the analysis, We try to find the inflection point through the shear web of the model and then analyze by introducing the geometric nonlinearity. The first optimization variables are introduced by the pitch angle and three web shapes. Third model such a honeycomb structure is good way to get an advantage for bending test. According to a method of previous optimization, third model is chosen and then the thickness of the web and blade as a variable is introduced, it is extracted as a result of displacement and the maximum stress per mass.

  • PDF

Improved Weighted Integral Method and Application to Analysis of Semi-infinite Domain (개선된 가중적분법과 반무한 영역의 해석)

  • 노혁천;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.369-376
    • /
    • 2002
  • The stochastic analysis of semi-infinite domain is presented using the weighted integral method, which is improved to include the higher order terms in expanding the displacement vector. To improve the weighted integral method, the Lagrangian remainder is taken into account in the expansion of the status variable with respect to the mean value of the random variables. In the resulting formulae only the 'proportionality coefficients' are introduced in the resulting equation, therefore no additional computation time and memory requirement is needed. The equations are applied in analyzing the semi-infinite domain. The results obtained by the improved weighted integral method are reasonable and are in good agreement with those of the Monte Carlo simulation. To model the semi-infinite domain, the Bettess's infinite element is adopted, where the theoretical decomposition of the strain-displacement matrix to calculate the deviatoric stiffness of the semi-infinite domains is introduced. The calculated value of mean and the covariance of the displacement are revealed to be larger than those given by the finite domain assumptions which is thought to be rational and should be considered in the design of structures on semi-infinite domains.

  • PDF

Characterizing nonlinear oscillation behavior of an MRF variable rotational stiffness device

  • Yu, Yang;Li, Yancheng;Li, Jianchun;Gu, Xiaoyu
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.303-317
    • /
    • 2019
  • Magneto-rheological fluid (MRF) rotatory dampers are normally used for controlling the constant rotation of machines and engines. In this research, such a device is proposed to act as variable stiffness device to alleviate the rotational oscillation existing in the many engineering applications, such as motor. Under such thought, the main purpose of this work is to characterize the nonlinear torque-angular displacement/angular velocity responses of an MRF based variable stiffness device in oscillatory motion. A rotational hysteresis model, consisting of a rotatory spring, a rotatory viscous damping element and an error function-based hysteresis element, is proposed, which is capable of describing the unique dynamical characteristics of this smart device. To estimate the optimal model parameters, a modified whale optimization algorithm (MWOA) is employed on the captured experimental data of torque, angular displacement and angular velocity under various excitation conditions. In MWOA, a nonlinear algorithm parameter updating mechanism is adopted to replace the traditional linear one, enhancing the global search ability initially and the local search ability at the later stage of the algorithm evolution. Additionally, the immune operation is introduced in the whale individual selection, improving the identification accuracy of solution. Finally, the dynamic testing results are used to validate the performance of the proposed model and the effectiveness of the proposed optimization algorithm.

Directions of mandibular canal displacement in ameloblastoma: A computed tomography mirrored-method analysis

  • Evangelista, Karine;Cardoso, Lincoln;Toledo, Italo;Gasperini, Giovanni;Valladares-Neto, Jose;Cevidanes, Lucia Helena Soares;de Oliveira Ruellas, Antonio Carlos;Silva, Maria Alves Garcia
    • Imaging Science in Dentistry
    • /
    • v.51 no.1
    • /
    • pp.17-25
    • /
    • 2021
  • Purpose: This study was performed to investigate mandibular canal displacement in patients with ameloblastoma using a 3-dimensional mirrored-model analysis. Materials and Methods: The sample consisted of computed tomographic scans of patients with ameloblastoma (n=10) and healthy controls (n=20). The amount of mandibular canal asymmetry was recorded as a continuous variable, while the buccolingual (yaw) and supero-inferior (pitch) directions of displacement were classified as categorical variables. The t-test for independent samples and the Fisher exact test were used to compare groups in terms of differences between sides and the presence of asymmetric inclinations, respectively (P<0.05). Results: The length of the mandibular canal was similar on both sides in both groups. The ameloblastoma group presented more lateral (2.40±4.16 mm) and inferior (-1.97±1.92 mm) positions of the mental foramen, and a more buccal (1.09±2.75 mm) position of the middle canal point on the lesion side. Displacement of the mandibular canal tended to be found in the anterior region in patients with ameloblastoma, occurring toward the buccal and inferior directions in 60% and 70% of ameloblastoma patients, respectively. Conclusion: Mandibular canal displacement due to ameloblastoma could be detected by this superimposed mirrored method, and displacement was more prevalent toward the inferior and buccal directions. This displacement affected the mental foramen position, but did not lead to a change in the length of the mandibular canal. The control group presented no mandibular canal displacement.