Machine learning techniques utilizing neural networks have been employed in various fields such as disease gene discovery and diagnosis, drug development, and prediction of drug-induced liver injury. Disease features can be investigated by molecular information of DNA. In this study, we developed a neural network to predict the length of DNA and the number of DNA species in mixture solution which are representative molecular information of DNA. In order to address the time-consuming limitations of gel electrophoresis as conventional analysis, we analyzed the dynamic data of a microfluidic concentrating device. The dynamic data were reconstructed into a spatiotemporal map, which reduced the computational cost required for training and prediction. We employed a convolutional neural network to enhance the accuracy to analyze the spatiotemporal map. As a result, we successfully performed single DNA length prediction as single-variable regression, simultaneous prediction of multiple DNA lengths as multivariable regression, and prediction of the number of DNA species in mixture as binary classification. Additionally, based on the composition of training data, we proposed a solution to resolve the problem of prediction bias. By utilizing this study, it would be effectively performed that medical diagnosis using optical measurement such as liquid biopsy of cell-free DNA, cancer diagnosis, etc.
Recently, with the increasing international interest on environmental issues, efforts have been made to reduce greenhouse gas emissions due to ship fuel, however, the dependence on fossil fuel is expected to continue for a while. Since fuel costs account for a high portion of the total operating cost of a ship, it is necessary to analyze the influence of oil prices on the shipping markets. The purpose of this study is to evaluate the relationship between the international oil prices and the four major shipping markets for bulk carriers. This study employed WTI as the oil price variable while monthly data from 2017 to 2020 from the four major shipping markets by classifying freight rates, charter rates, newbuilding prices, and secondhand prices were also considered in multiple ship sizes of capesize, panamax, supramax, and handysize. Firstly, the results of the correlation analysis using the VAR model indicate that changes in international oil prices have a statistically positive (+) significant effect on BCIS only in the second time lag, on BSIS at all lags, and on BHIS only in the first staggered period. Secondly, as a result of correlation analysis using the VECM model, in the case of BPIC, BHIC, BCIN, and BHIR, the cointegration coefficient value has a negative (-) significant effect at the 5% significance level in the cointegration relationship with international oil prices. Further, in the case of the dynamic correlation, the increase in oil price in the first period of the lag leads to a decrease in the BCIN newbuilding prices while the increase in the oil price in the first and second period in the lag leads to a decrease in the BHIR used ship prices.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.301-308
/
2018
This study explores an analytical mathematical model designed to estimate the optimal debt ratio of the Korean automobile industry, which has a more significant effect on the national economy than that of other industries, and attempts to estimate the optimal debt ratio based on objective data. The analytical model is based on ROA and ROE which uses the debt ratio as an independent variable and employs ROS, TAT, and NFCL as the related parameters. Regarding the NFCL, the optimal debt ratio is usually defined as the debt ratio that maximizes the ROA and ROE and is calculated using analytical procedures, such as by adding an equation that considers the debt ratio and the linearity relationship to the analytical model. This is because the optimal debt ratio can be calculated reliably by making use of an estimated value within a certain range, which is derived from more than two calculations rather than a single estimation starting from one calculation formula. In this study, for the estimation of the optimal debt ratio, the ROA and ROE are expressed as a quadratic equation with the debt ratio as the independent variable. Using this analysis procedure, the optimal debt ratio obtained using the data from the Korean automobile industry over a sixteen year period, which would optimize the profitability of the Korean automobile industry, was found to be 188% of the debt ratio in the ROA and 213% of the debt ratio in the ROE. This result was obtained by overcoming the problem of the reliability of the estimation value in spite of the limitations of the logical theory of this study, and can be interpreted as meaning that maintaining a debt ratio of 188% to 213% can enhance the profitability and reduce the risks in the Korean automobile industry. Furthermore, this indicates that the existing debt ratio of the Korean automobile industry is lower than the optimal value within the estimated range. Consequently, it is necessary for corporations to change their future debt ratio policies, given that the purpose of debt ratio management is to maintain safety and increase profitability, and to take into account the characteristics of the specific industry.
Journal of the Korean Society of Food Science and Nutrition
/
v.36
no.4
/
pp.488-498
/
2007
The purposes of this study were to: a) provide evidences concerning the effects of emotional leadership b) examine the impacts of emotional leadership on employee-related variables, 'job satisfaction', 'organizational commitment', 'organizational performance' and 'turnover intention', and c) identify a conceptual framework underlying emotional leadership. A survey was conducted from August 23 to November 3, 2005 to collect data from mid-level managers in food service company headquarters (N=219). Statistical analyses were completed using SPSS Win (12.0) for descriptive, reliability, factor and correlation analyses and AMOS (5.0) for confirmatory factor analysis and structural equation modeling. The main results of this study were as follows. First, the managers gave the highest point to their leaders in the emotional leadership competence 'organizational awareness : reading the currents, decision networks, and politics at the organizational level' and gave the lowest point in the emotional leadership competence 'influence: wielding effective tactics for persuasion'. Second, the means of job satisfaction was above the midpoint (3 points). Employees' job satisfaction with 'coworkers' was relatively high. However, the extents of satisfaction with 'payroll' 'promotion', and 'work environment' were relatively low. Third, the organizational commitment was above the midpoint (3 points). In the organizational commitment, 'loyalty' factor was higher than 'commitment' factor. Fourth, the means of organizational performance was above the midpoint. The highest organizational performance variable was 'internal efficiency; trying to reduce cost' and the lowest organizational performance variable was 'internal fairness ; equitable treatment and all are treated with respect with no regard to status and grade'. Fifth, most respondents intended on 'thinking of quitting ; towards turnover process'. Sixth, the test of hypothesis using structural equation modeling found that emotional leadership produced p[Isitive effects on job attitude and job performance. Emotional leadership enhanced job satisfaction and organizational commitment, and in turn, employees' attitude positive effects on organizational performance; emotional leadership also had a direct impact on organizational performance
In this chapter, we summarize the results on the optimal location selection and present limitation and direction of research. In order to reach the objective, this study selected and tested the interaction model which obtains the value of co-ordinates on location selection through the optimization technique. This study used the original variables in the model, but the results indicated that there is difference in reality. In order to overcome this difference, this study peformed market survey and found the new variables (first data such as price, quality and assortment of goods, and the second data such as aggregate area, and area of shop, and the number of cars in the parking lot). Then this study determined an optimal variable by empirical analysis which compares an actual value of market share in 1988 with the market share yielded in the model. However, this study found the market share in each variables does not reflect a reality due to an assumption of λ-value in the model. In order to improve this, this study performed a sensitivity analysis which adds the λ value from 1.0 to 2.9 marginally. The analyzed result indicated the highest significance with the market share ratio in 1998 at λ of 1.0. Applying the weighted value to a variable from each of the first data and second data yielded the results that more variables from the first data coincided with the realistic rank on sales. Although this study have some limits and improvements, if a marketer uses this extended model, more significant results will be produced.
This study is to reveal the acceptance factors of the Market Sentiment Index (MSI) created by reflecting the investor sentiment extracted by processing unstructured big data. The research model was established by exploring exogenous variables based on the rational behavior theory and applying the Technology Acceptance Model (TAM). The acceptance of MSI provided to investors in the stock market was found to be influenced by the exogenous variables presented in this study. The results of causal analysis are as follows. First, self-efficacy, investment opportunities, Innovativeness, and perceived cost significantly affect perceived ease of use. Second, Diversity of services and perceived benefits have a statistically significant impact on perceived usefulness. Third, Perceived ease of use and perceived usefulness have a statistically significant effect on attitude to use. Fourth, Attitude to use statistically significantly influences the intention to use, and the investment opportunities as an independent variable affects the intention to use. Fifth, the intention to use statistically significantly affects the final dependent variable, the intention to use continuously. The mediating effect between the independent and dependent variables of the research model is as follows. First, The indirect effect on the causal route from diversity of services to continuous use intention was 0.1491, which was statistically significant at the significance level of 1%. Second, The indirect effect on the causal route from perceived benefit to continuous use intention was 0.1281, which was statistically significant at the significance level of 1%. The results of the multi-group analysis are as follows. First, for groups with and without stock investment experience, multi-group analysis was not possible because the measurement uniformity between the two groups was not secured. Second, the analysis result of the difference in the effect of independent variables of male and female groups on the intention to use continuously, where measurement uniformity was secured between the two groups, In the causal route from usage attitude to usage intention, women are higher than men. And in the causal route from use intention to continuous use intention, males were very high and showed statistically significant difference at significance level 5%.
Since 2008, China's shipping industry has been in a slump, with shipbuilding orders falling sharply, and high-growth excess capacity has become increasingly apparent, leaving many firms with sharply reduced orders at risk of bankruptcy and shutdown. To ensure the development of the shipbuilding industry and enhance the international competitiveness of the shipbuilding industry, it is necessary to analyze the present situation of the shipbuilding industry and the financial situation of the shipbuilding enterprises. And analyzing the problems faced by enterprises from the perspective of capital structure is very meaningful to the shipbuilders with high capital operation. We are trying to analyze the determinants of capital structure of China's shipbuilding listed companies. 30 listed Chinese shipbuilding and listed companies have been designated as sample companies that can obtain financial statements for 13 consecutive years. They also divided 30 sample companies into shipbuilding, shipbuilding-related manufacturing, and shipbuilding-related transportation. Dependent variable is the debt level of the year, independent variable includes the debt level of the previous year, fixed asset ratio, profitability ratio, depreciation cost ratio and asset size. The regression model of the panel used to analyze determinants is capital structure. The results of the empirical analysis are as follows. First, a fixed-effect model for the entire entity showed that the debt-to-equity ratio and the size of the asset in the previous period had a positive effect on the debt-to-equity ratio in the current period. Second, the impact of the profitability ratio on the debt level in the prior term also supports the capital procurement ranking theory rather than the static counter-conflict theory. Third, it was shown that the ratio of the depreciation of the prior term, which replaces the non-liability tax effect, affects the debt-to-equity ratio in the current period.
Sejeong Bae ;Bokyung Son ;Taejun Sung ;Yeonsu Lee ;Jungho Im ;Yoojin Kang
Korean Journal of Remote Sensing
/
v.39
no.5_3
/
pp.1009-1029
/
2023
Urban trees play a vital role in urban ecosystems,significantly reducing impervious surfaces and impacting carbon cycling within the city. Although previous research has demonstrated the efficacy of employing artificial intelligence in conjunction with airborne light detection and ranging (LiDAR) data to generate urban tree information, the availability and cost constraints associated with LiDAR data pose limitations. Consequently, this study employed freely accessible, high-resolution multispectral satellite imagery (i.e., Sentinel-2 data) to estimate fractional tree canopy cover (FTC) within the urban confines of Suwon, South Korea, employing machine learning techniques. This study leveraged a median composite image derived from a time series of Sentinel-2 images. In order to account for the diverse land cover found in urban areas, the model incorporated three types of input variables: average (mean) and standard deviation (std) values within a 30-meter grid from 10 m resolution of optical indices from Sentinel-2, and fractional coverage for distinct land cover classes within 30 m grids from the existing level 3 land cover map. Four schemes with different combinations of input variables were compared. Notably, when all three factors (i.e., mean, std, and fractional cover) were used to consider the variation of landcover in urban areas(Scheme 4, S4), the machine learning model exhibited improved performance compared to using only the mean of optical indices (Scheme 1). Of the various models proposed, the random forest (RF) model with S4 demonstrated the most remarkable performance, achieving R2 of 0.8196, and mean absolute error (MAE) of 0.0749, and a root mean squared error (RMSE) of 0.1022. The std variable exhibited the highest impact on model outputs within the heterogeneous land covers based on the variable importance analysis. This trained RF model with S4 was then applied to the entire Suwon region, consistently delivering robust results with an R2 of 0.8702, MAE of 0.0873, and RMSE of 0.1335. The FTC estimation method developed in this study is expected to offer advantages for application in various regions, providing fundamental data for a better understanding of carbon dynamics in urban ecosystems in the future.
This paper investigates the effects of technology collaboration between the main supplier and buyer on buyer's new product development under dynamic environment. Based on 428 Korean manufacturing firms, we conducted regression analysis. The technology collaboration between the main supplier and buyer is adopted as a independent variable and quality, cost and lead time performance of new product development projects are used as dependents variables. Environment dynamic is also used as a moderate variables. We found that the in general, technology collaboration is positively associated with the performance of buyers' new product development, but in the high degree of dynamic environment, technology collaboration is negatively associated with the performance of buyers' new product development unlike our expectation. Thus, we divide our sample into two groups; shipbuilding industry with the low degree of environment dynamic and electronic and IT device industry with the high degree of environment dynamic and conducted a post hoc analysis. As a result, in ship building industry, the technology collaboration is significant to improve NPD projects performance, while in electronic and IT device industry, the technology collaboration with a main supplier is not significant as well as coefficient is negative. In that, under the highly dynamic condition with the fast change of technology and products obsolescence the NPD collaboration with the main supplier does not works unlike a stable environment. This implies that the NPD attributes of buyer are different by their environmental factor and the fit between given environmental feature and the collaboration synergy is critical factor for improving the effect of NPD collaboration between supplier and buyer.
The purpose of this study was to evaluate the effects of secondary task such as sending text message (STM) and searching navigation (SN) using the variable indicating control of vehicle ((Medial-Lateral Coefficient of Variation, MLCV), (Anterior-Posterior Coefficient of Variation, APCV)) and motion signal (Jerk-Cost function, JC). Participants included 50s taxi drivers; 14 males and 14 females. Participants were instructed to keep a certain distance (30m) from the car ahead with constant speed (80km/hr or 100km/hr). Experiement consisted of driving alone for 1minute and driving with secondary task for 1minute. Both MLCV and APCV were significantly increased during Driving + Sending Text Message(STM) and Driving + Searching Navigation(SN) than Driving only. Also, JC was increased during Driving + STM and Driving + SN than Driving only. In this study, we found that even in the experts group who are taxi driver and have 25 years driving experience, the smoothness of motion is decreased and the control of vehicle is disturbed when they were performing secondary tasks like sending text message or searching navigation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.