• 제목/요약/키워드: Variable Blank Holding Force

검색결과 10건 처리시간 0.027초

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

초고강도강판 드로잉 성형에서 가변 블랭크 홀딩력에 의한 스프링백 경향 (Springback tendency with the variable blank holding force in the drawing process of the UHSS)

  • 곽정환;정철영;김세호;송정한
    • Design & Manufacturing
    • /
    • 제12권3호
    • /
    • pp.60-65
    • /
    • 2018
  • The production of the automotive parts with the ultra high strength steel usually involves large amount of springback as well as fracture during the cold stamping process. Variable blank holding force(VBHF) can be used as one of the effective process parameters to reduce the springback amount with achieving better condition of formability. In this paper, VBHF with respect to the punch stroke is applied to the stamping process of the front side rear lower member for reducing the springback amount. From the analyses with constant blank holding force(CBHF), 24 kinds of VBHF conditions are utilized to investigate the springback tendency. It is noted that springback can be effectively reduced when BHF is increased near the bottom dead center because VBHF provides the tensile force to the blank with an adequate level of deformation without fracture.

블랭크 홀딩력 조절을 통한 성형성 향상에 관한 수치적 연구 (A Numerical Study on formability improvement by adjusting blank holding force)

  • 최현석;정완진
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2016
  • In sheet metal forming process, drawing is typical process. And the key factor of drawing is blank holding force (BHF) A low BHF can cause wrinkling, whereas a high BHF can cause fracture during a deep drawing process. Thus, formability can be influenced by application appropriate BHF. In this study, a variable blank holding force (VBHF) is applied to extend the forming limit by avoiding both wrinkling and fracture. To determine VBHF in drawing process, numerical simulations and statistical analysis are carried out using commercial FEM software.

블랭크 홀딩력 제어에 의한 스탬핑 가공성 향상 기술 (Improvement of the Stamping Formability by BHF Control)

  • 김영석;임성언;손형성;한수식
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.269-275
    • /
    • 1999
  • A variable blank holding force method is proposed to improve deep drawing characteristics of sheet materials. In this method, the blank holding force (BHF) is controlled throughout a drawing process so that the punch load does not exceed a critical value, which is slightly less than the conventional process with the conforming process with the variable BHF is more flexible than the conventional process with the constant BHF and it could be used for improving the product's quality and drawability. In this paper we suggest a method controlling the BHF as a function of punch travel during the forming process. The optimization BHF curves are determined theoretically and experimentally. It is concluded that for the case of optimum BHF control methods the drawn cup height and the drawing formability achieved by this method are increased than those for constant BHF method. Also, as comparing the wall thickness distribution of the cup drawn by the constant BHF and the optimum BHF control, the BHF control reduce the wall thickness variation of the drawn cup at the cup wall and make the cup thickness distribution more uniformly than the constant BHF.

  • PDF

실험용 수치제어 쿠션 시스템의 개발과 드로잉 성형성에 미치는 영향 (Development of Experimental Numerically Controlled Cushion System and Its Effects on Drawability)

  • 이정우;최치수;최이천
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 추계학술대회 논문집
    • /
    • pp.120-123
    • /
    • 2000
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup during, we set up pressure controlling system on experimental hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system Using the NC cushion system we compared the drawability of square steel cups with NC cushion and that with conventional cushion. The results show drawability is greatly improved when the pressure control curve is designed in a S-shaped curve. This paper includes design details of the NC cushion system and experimental analysis of drawability with experimental NC cushion system.

  • PDF

박판의 덥 드로잉 성형을 위한 수치제어 쿠션 시스팀의 개발 (Development of Numerically Controlled Cushion System for Use in Deep Drawing of Sheet Metals)

  • 이정우;최치수
    • 소성∙가공
    • /
    • 제10권2호
    • /
    • pp.115-122
    • /
    • 2001
  • It is well known, for many years, that deep drawability can be improved by applying variable blank holding force. To apply variable blank holding force during cup drawing, we set up cushion pressure control system on the hydraulic press, and the pressure control system is often called NC(Numerically Controlled) cushion system. A cushion pressure control experiment was carried out using the NC cushion and it was shown that the proposed system produced good performance. The comparison of drawability of square cups with and without NC cushion showed that the drawability could be greatly improved when S-shaped pressure curve was applied. This paper includes design details of the NC cushion system and experimental analysis of drawability with NC cushion system.

  • PDF

Development of Numerically Controlled Hydraulic Cushion System for Use in Deep Drawing of Sheet Metals

  • Lee, Jeong-Woo;Park, Chi-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.301-301
    • /
    • 2000
  • It is well known, for many years, that deep drawability ,can be improved by applying variable blank holding force. To apply variable blank holding force during cup during, we set up pressure controlling system on experimental hydraulic press, and the pressure control system is often called NC(Numerically Controlled} cushion system. Using the NC cushion system we carry out pressure control experiment and the proposed structure shows good performance. And we compare drawability of square steel cups with NC cushion and that with conventional cushion. The results show drawability is greatly improved when the pressure control curve is designed in a S-shaped curve. This paper includes design details of the NC cushion system and experimental analysis of drawability with experimental NC cushion system.

  • PDF

AZ31B 마그네슘합금 판재의 원형 및 사각 딥드로잉 성형성의 실험적 평가 (A Study on the Experimental Evaluation of AZ31B Sheet Formability with Circle and Rectangle Shape)

  • 권기태;강석봉;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2007
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. The crystal structure of Magnesium was hexagonal close-packed, so its formability was poor at room temperature. But formability was improved in high temperature with increasing of slip planes, twins, dynamic recrystallization. In this study The formability of AZ31B magnesium sheet is estimated according to the variable temperatures, forming speed, thickness, blank holding force. The results of deep drawing experiences show that the formability is well at the range from 200 to $250^{\circ}C$, 20 to 60 mm/min forming speed and 2.5 to 3KN blank holding force.

  • PDF

고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감 (Stress-Based Springback Reduction of an AHSS Front Side Member)

  • 송정한;김세호;박성호;허훈
    • 소성∙가공
    • /
    • 제15권4호
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

다이캐스팅 공정의 대체를 위한 마그네슘판재의 온간, 열간 ???K드로잉 성형성 평가 (The Drawbility Estimation in Warm and Rot Sheet Forming Process of Magnesium for Substitution of Die-casting Process)

  • 추동군;오세웅;이준희;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated according to the variable temperatures (200, 250, 300, 350 and $400^{\circ}C$), forming speed (20, 50, 100 mm/min), thickness (0.8, 1.4 t), blank holding force (1.0, 1.4, 1.7kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiences show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 1.4kN blank holding force. The 0.8t magnesium sheets were deformed better than 1.4t. BHF was controlled in order to improve drawability and protect the change of cup thickness. When BHF was controlled, tearing and thickness change were decreased and LDR. was improved from 2.1 to 3.0.

  • PDF