• Title/Summary/Keyword: Variability analysis

Search Result 2,027, Processing Time 0.031 seconds

Evaluation of the Ambient Temperature Effect for the Autonomic Nervous Activity of the Young Adult through the Frequency Analysis of the Heart Rate Variability (심박변이율 주파수 분석을 통한 실내온도에 따른 건강한 성인의 자율신경계 활동 평가)

  • Shin, Hangsik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1240-1245
    • /
    • 2015
  • The purpose of this paper is to investigate the autonomic nervous system activity in various ambient temperatures. To evaluate autonomic function, we use the frequency domain analysis of heart rate variability such as FFT(fast fourier transformation), AR(Auto-Regressive) model and Lomb-Scargle peridogram. HRV(heart rate variability) is calculated by using ECG recorded from 3 different temperature room which temperature is controlled in 18℃(low), 25℃(mid) and 38℃(high), respectively. Totally 22 subjects were participated in the experiment. In the results, the most significant autonomic changes caused by temperature load were found in the HF(high frequency) component of FFT and AR model. And the HF power is decreased by increasing temperature. Significance level was increased by increasing the difference of temperatures.

Changes of Gait Variability by the Attention Demanding Task in Elderly Adults

  • Yeo, Sang Seok
    • The Journal of Korean Physical Therapy
    • /
    • v.29 no.6
    • /
    • pp.303-306
    • /
    • 2017
  • Purpose: Gait variability is defined as the intrinsic fluctuations which occur during continuous gait cycles. Increased gait variability is closely associated with increased fall risk in older adults. This study investigated the influence of attention-demanding tasks on gait variability in elderly healthy adults. Methods: We recruited 15 healthy elderly adults in this study. All participants performed two cognitive tasks: a subtraction dual-task (SDT) and working memory dual-task (WMDT) during gait plus one normal gait. Using the $LEGSys^+$ system, we measured the coefficient of variation (CV %=$100{\times}$[standard deviation/mean]) for participants' stride time, stride length, and stride velocity. Results: SDT gait showed significant increment of stride time variability compared with usual gait (p<0.05), however, stride length and velocity variability did not difference between SDT gait and usual gait (p>0.05). WMDT gait showed significant increment of stride time and velocity variability compared with usual gait (p<0.05). In addition, stride time variability during WMDT gait also significantly increased compared with SDT gait (p<0.05). Conclusion: We reported that SDT and WMDT gait can induce the increment of the gait variability in elderly adults. We assume that attention demanding task based on working memory has the most influence on the interference between cognitive and gait function. Understanding the changes during dual task gait in older ages would be helpful for physical intervention strategies and improved risk assessment.

A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale

  • Pan, Zichao;Ruan, Xin;Chen, Airong
    • Computers and Concrete
    • /
    • v.15 no.2
    • /
    • pp.231-257
    • /
    • 2015
  • This paper discusses the spatial variability of the carbonation depth caused by the mesoscopic structure of the concrete and the influence of the spatial variability on the thickness of the concrete cover. To conduct the research, a method to generate the random aggregate structure (RAS) based on polygonal particles and a simplified numerical model of the concrete carbonation at meso-scale are firstly developed. Based on the method and model, the effect of the aggregate properties including shape, content and gradation on the spatial variability of the carbonation depth is comprehensively studied. The results show that a larger degree of the spatial variability will be obtained by using (1) the aggregates with a larger aspect ratio; (2) a larger aggregate content; (3) the gradation which has more large particles. The proper sample size and model size used in the analysis are also studied. Finally, a case study is conducted to demonstrate the influence of the spatial variability of the carbonation depth on the proper thickness of the concrete cover. The research in this paper not only provides suggestions on how to decrease the spatial variability, but also proposes the method to consider the effect of the spatial variability in designing the thickness of the concrete cover.

Analysis of Heart Rate Variability Signals in Time-Domain and Frequency-Domain (Heart Rate Variability 신호의 시간 및 주파수 영역 분석)

  • Kil, Jung-Su;Kwon, Ho-Yeol
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.163-167
    • /
    • 2002
  • Autonomic nervous system play an important role of keeping our health as balancing homeostasis. But the abnormality of these abilities makes our presence be feeble. To obtain these information of body which helps for us to decide whether one is healthy or not, based on the study of Heart Rate Variability. In this paper, we presented HRV model and its processing steps to extract some information of human body. After that, some experimental results are presented in time-domain and frequency-domain.

  • PDF

Stochastic Response Analysis of Transmission Tower Subjected to Young's Modulus Variation (송전철탑의 탄성계수의 변이에 따른 확률적 응답변이도)

  • 동원영;정영수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.207-215
    • /
    • 1993
  • With the aid of finite element method, this paper deals with the problem of structural response variability of transmission tower subjected to the spatial variability of material properties, Young's modulus herein. The spatial variability of material property are modeled as two-dimensional stochastic field which has an isotropic auto-correlation function. Response variability has been computed based on two numerical techniques, such as the Neumann expansion method in conjunction with the Monte Carlo simulation method. The results by these numerical methods are compared with those by the deterministic approach.

  • PDF

Torsional effects due to concrete strength variability in existing buildings

  • De Stefano, M.;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.379-399
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the torsional effects related to the irregular stiffness and strength distribution due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic stiffness distributions, have been considered, and a statistical analysis has been performed on the induced torsional effects. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings, showing that the Eurocode 8 provisions, despite not allowing explicitly for material strength variability, are conservative as regards the estimation of structural demand.

Seismic performance sensitivity to concrete strength variability: a case-study

  • Stefano, M. De;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.321-337
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the reduction in seismic performance due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic strength distributions, have been considered, and a statistical analysis has been performed on the induced reduction in seismic performance. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings. The comparison has shown that the Eurocode 8 provisions are not conservative for existing buildings having a large variability in concrete strength.

The Concept and Clinical Application for the Measurement of Heart Rate Variability (심박동수 변이(Heart Rate Variability) 측정법의 개념과 임상적 활용)

  • Woo, Jong-Min
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.12 no.1
    • /
    • pp.3-14
    • /
    • 2004
  • In this article, the effects of stress on central nerve system and heart function and the concept of heart rate variability were reviewed. HRV(Heart Rate Variability), the periodical change of the heart rate, is indicated larger in the healthier because they respond flexibly to various sorts of facts influencing on HR. HRV analysis is largely composed of the time domain analysis and the frequency analysis. In the former the flexibility of heart function is analysed, while in the latter autonomic nerve function is examined, which is the degree of sympathetic and parasympathetic nerve activity and the state of balance. Furthermore, existence or nonexistence of disease and/or level of stress can be estimated by measuring the variability and normality of heart rate, and balance of autonomic nerve system, and through HRV biofeedback the symptoms of anxiety disorder or asthma can be reduced.

  • PDF

A Study on the Concept of Sample by a Historical Analysis (표본 개념에 대한 고찰: 역사적 분석을 중심으로)

  • Tak, Byungjoo;Ku, Na Young;Kang, Hyun-Young;Lee, Kyeong-Hwa
    • School Mathematics
    • /
    • v.16 no.4
    • /
    • pp.727-743
    • /
    • 2014
  • The concepts of sample and sampling are central to the statistical thinking and foundations of the statistical literacy, so we need to be emphasized their importance in the statistics education. However, many researches which dealt with samples only analyze textbooks or students' responses. In this study, the concept of sample is addressed by a historical consideration which is one aspect of the didactical analysis. Moreover, developing concept of sample is analyzed from the preceding studies about the statistical literacy, considering the sample representativeness and the sampling variability. The results say that the historical process of developing the concept of sample can be divided into three step: understanding the sample representativeness; appearing the sample variance; recognizing the sampling variability. Above all, it is important to aware and control the sampling variability, but many related researches might not consider sample variability. Therefore, it implies that the awareness and control of sampling variability are needed to reflect to the teaching-learing of sample for developing the students' statistical literacy.

  • PDF

Spatial variability analysis of soil strength to slope stability assessment

  • Lombardi, Mara;Cardarilli, Monica;Raspa, Giuseppe
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.483-503
    • /
    • 2017
  • Uncertainty is a fact belonging to engineering practice. An important uncertainty that sets geotechnical engineering is the variability associated with the properties of soils or, more precisely, the characterization of soil profiles. The reason is due largely to the complex and varied natural processes associated with the formation of soil. Spatial variability analysis for the study of the stability of natural slopes, complementing conventional analyses, is able to incorporate these uncertainties. In this paper the characterization is performed in back-analysis for a case of landslide occurred to verify afterwards the presence of the conditions of shear strength at failure. This approach may support designers to make more accurate estimates regarding slope failure responding, more consciously, to the legislation dispositions about slope stability evaluation and future design. By applying different kriging techniques used for spatial analysis it has been possible to perform a 3D-slope reconstruction. The predictive analysis and the areal mapping of the soil mechanical characteristics would support the definition of priority interventions in the zones characterized by more critical values as well as slope potential instability. This tool of analysis aims to support decision-making by directing project planning through the efficient allocation of available resources.