• Title/Summary/Keyword: Vapor phase growth

Search Result 272, Processing Time 0.021 seconds

Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion (InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석)

  • Im, Ik-Tae;Youn, Suk-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

A study on the growth behavior of AlN single crystal growth by hydride vapor phase epitaxy (Hydride vapor phase epitaxy에 의한 후막 AlN 단결정의 성장 거동에 관한 연구)

  • Seung-min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.4
    • /
    • pp.139-142
    • /
    • 2024
  • Along with the use of wide bandgap energy materials such as SiC and GaN in power semiconductors and the development trend of devices, many research results have been reported, including the success of research on AlN single crystals with higher energy gaps and the development of 2-inch single crystal wafers. However, AlN single crystals grown using chemical vapor deposition have been developed into thin films less than a few micrometers thick, but there are almost no results with thicknesses greater than that. Therefore, in this study, we attempted to grow by applying HVPE (Hydride vapor phase epitaxy), one of the chemical vapor deposition methods. The grown AlN single crystal was manufactured using self-designed equipment, and we attempted to establish the conditions for manufacturing AlN single crystals on sapphire wafer. We would like to characterize the growth behavior through an optical microscope observation.

Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods and their photoluminescent properties (수직배향된 산화아연 나노막대의 성장 및 발광특성에 관한 연구)

  • Jeon Yong-Ho;Park Won-Il;Lee Gyu-Cheol
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.174-175
    • /
    • 2002
  • One-dimensional semiconductor nanowires and nanorods have attracted increasing interest due to their unique physical properties and diversity for potential electronic and photonic device applications., Unlike the conventional nanowires fabricated by metal catalyst-assisted vapor-liquid-solid (VLS) method, we developed metalorganic vapor-phase epitaxial (MOVPE) growth for which no catalyst is needed. The structural and photoluminecent properties will also be discussed. (omitted)

  • PDF

The Observation of Nucleation & Growth during Water Vapor Induced Phase Inversion of Chlorinated Poly(vinyl chloride) Solution using SALS

  • Jang, Jae Young;Lee, Young Moo;Kang, Jong Seok
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the effects of alcohol on phase separation of chlorinated poly(vinyl chloride) (CPVC)/tetrahydrofuran (THF)/alcohol (9/61/30 wt%) solution during water vapor induced phase separation. A typical scattering pattern of nucleation & growth (NG) was observed for all casting solutions of CPVC/THF/alcohol. In the case of the phase separation of CPVC dope solution containing 30 wt% ethanol or n-propanol, the demixing with NG was observed to be heterogeneous. Meanwhile, the phase separation of CPVC dope solution with 30 wt% n-butanol was found to be predominantly homogeneous NG. Although the different phase separation behavior of NG was observed with types of alcohol additives, the resultant surface morphology had no remarkable differences. That is, even though the NG process by water vapor is either homogeneous or heterogeneous, this difference does not play a main role on the final surface morphology. However, it was estimated from the result of hydraulic flux that the phase separation by homogeneous NG provided the membrane geometry with lower resistance in comparison with that by heterogeneous one.

Selective regrowth of InP current blocking layer by chloride vapor phase epitaxy on mesa structures (Chloride VPE 법에 의한 메사 구조위에 InP 전류 차단막의 선택적 재성장)

  • 장영근;김현수;최훈상;오대곤;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.207-212
    • /
    • 1999
  • Undoped InP epilayers with high purity were grown by using $In/PCl_3/H_2$ chloride vapor phase epitaxy. It was found that the growth of InP homoepitaxial layer is optimized at the growth temperature of $630^{\circ}C$ and at the $PCl_3$ molar fraction of $1.2\times10^{-2}$. The carrier concentration of InP epilayer was less than $10^{14} {cm}^{-3}$ from the low temperature (11K) photoluminescence measurement. Growth behavior of undoped InP current blocking layer on reactive ion-etched (RIE) mesas has been investigated for the realization of 1.55 $\mu \textrm m$buried-heterostructure laser diode (BH LD), using chloride vapor phase epitaxy. On the base of InP homoepitaxy, InP current blocking layers were grown at the growth temperatures ranging from $620^{\circ}C$ to $640^{\circ}C$. Almost planar grown surfaces without edge overgrowth were achieved as the growth temperature increased. It implied that higher temperature enhanced the surface diffusion of the growth species on the {111} B planes and suppressed edge overgrowth.

  • PDF

Development Behavior of Vaporizing Sprays from a High-Pressure Swirl Injector Using Exciplex Fluorescence Method

  • Choi, Dong-Seok;Kim, Duck-Jool;Hwang, Soon-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1143-1150
    • /
    • 2000
  • The effects of ambient conditions on vaporizing sprays from a high-pressure swirl injector were investigated by an exciplex fluorescence method. Dopants used were 2% fluorobenzene and 9% DEMA (diethyl-methyl-amine) in 89% solution of hexane by volume. In order to examine the behavior of liquid and vapor phases inside of vaporizing sprays, ambient temperatures and pressures similar to engine atmospheres were set. It was found that the ambient pressure had a significant effect on the axial growth of spray, while ambient temperature had a great influence on the radial growth. The spatial distribution of vapor phase at temperatures above 473K became wider than that of liquid phase after half of injection duration. From the analysis of the area ratio for each phase, the middle part (region II) in the divided region was the region which liquid and vapor phases intersect. For liquid phase, fluorescence-intensity ratio was greatly changed at lms after the start of injection. However, the ratio of vapor phase was nearly uniform in each divided region throughout the injection.

  • PDF

A study on the growth behavior of AlN single crystal according to the change of N2 in HVPE propcess (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 N2 양의 변화에 따른 AlN 단결정의 성장 거동에 관한 연구)

  • Kyung-Pil Yin;Seung-Min Kang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.2
    • /
    • pp.61-65
    • /
    • 2024
  • HVPE (Hydride vapor phase epitaxy) is a method of manufacturing thin films or single crystals using gaseous raw materials. This is a method that applies the principles of chemical vapor deposition to grow a single crystal of a material with low meltability or high melting point, and is one of the methods that can obtain a gallium nitride (GaN) single crystal. Recently, much research has been conducted to grow aluminum nitride (AlN) single crystals using this method, but good results have not yet been obtained. In this study, we attempted to grow AlN single crystals using the HVPE method. Nitrogen was used as a carrier gas in the growth process, and the growth results according to changes in the amount of nitrogen (N2) were examined. Changes in growth crystals as the amount of nitrogen increased were confirmed. The shape of the grown AlN single crystal was observed using an optical microscope, and the rocking curve was measured using double crystal X-ray diffractometry (DCXRD) to confirm the creation of the AlN crystal. The crystallinity of single crystals was also investigated.

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

A Novel Solid Phase Epitaxy Emitter for Silicon Solar Cells

  • Kim, Hyeon-Ho;Park, Seong-Eun;Kim, Yeong-Do;Ji, Gwang-Seon;An, Se-Won;Lee, Heon-Min;Lee, Hae-Seok;Kim, Dong-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.480.1-480.1
    • /
    • 2014
  • In this study, we suggest the new emitter formation applied solid phase epitaxy (SPE) growth process using rapid thermal process (RTP). Preferentially, we describe the SPE growth of intrinsic a-Si thin film through RTP heat treatment by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Phase transition of intrinsic a-Si thin films were taken place under $600^{\circ}C$ for 5 min annealing condition measured by spectroscopic ellipsometer (SE) applied to effective medium approximation (EMA). We confirmed the SPE growth using high resolution transmission electron microscope (HR-TEM) analysis. Similarly, phase transition of P doped a-Si thin films were arisen $700^{\circ}C$ for 1 min, however, crystallinity is lower than intrinsic a-Si thin films. It is referable to the interference of the dopant. Based on this, we fabricated 16.7% solar cell to apply emitter layer formed SPE growth of P doped a-Si thin films using RTP. We considered that is a relative short process time compare to make the phosphorus emitter such as diffusion using furnace. Also, it is causing process simplification that can be omitted phosphorus silicate glass (PSG) removal and edge isolation process.

  • PDF