• Title/Summary/Keyword: Vapor growth

Search Result 1,157, Processing Time 0.027 seconds

Selective regrowth of InP current blocking layer by chloride vapor phase epitaxy on mesa structures (Chloride VPE 법에 의한 메사 구조위에 InP 전류 차단막의 선택적 재성장)

  • 장영근;김현수;최훈상;오대곤;최인훈
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3A
    • /
    • pp.207-212
    • /
    • 1999
  • Undoped InP epilayers with high purity were grown by using $In/PCl_3/H_2$ chloride vapor phase epitaxy. It was found that the growth of InP homoepitaxial layer is optimized at the growth temperature of $630^{\circ}C$ and at the $PCl_3$ molar fraction of $1.2\times10^{-2}$. The carrier concentration of InP epilayer was less than $10^{14} {cm}^{-3}$ from the low temperature (11K) photoluminescence measurement. Growth behavior of undoped InP current blocking layer on reactive ion-etched (RIE) mesas has been investigated for the realization of 1.55 $\mu \textrm m$buried-heterostructure laser diode (BH LD), using chloride vapor phase epitaxy. On the base of InP homoepitaxy, InP current blocking layers were grown at the growth temperatures ranging from $620^{\circ}C$ to $640^{\circ}C$. Almost planar grown surfaces without edge overgrowth were achieved as the growth temperature increased. It implied that higher temperature enhanced the surface diffusion of the growth species on the {111} B planes and suppressed edge overgrowth.

  • PDF

High indium incorporation in the growth of InGaAs on (100) GaAs by precursor alternating metalorganic chemical vapor deposition (Precursor alternating metalorganic chemical vapor deposition에 의한 (100) GaAs 기판위로의 InGaAs 성장시의 높은 indium 유입)

  • 정동근
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.4
    • /
    • pp.354-358
    • /
    • 1996
  • High indium incorporation was observed in InGaAs growth by precursor alternating metalorganic chemical vapor deposition (PAMOCVD). A possible mechanism of high indium incorporation into the crystal in PAMOCVD was proposed by considering the decomposition products of gallium and indium precursors, and thus the different adsorption behavior of the decomposed precursor molecules.

  • PDF

Growth of Rubrene Crystalline Wire via Solvent-vapor Annealing

  • Park, Ji-Hoon;Choi, Jeong-M.;Lee, Kwang-H.;Mun, Sung-Jin;Ko, G.;Im, Seong-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.871-873
    • /
    • 2009
  • We report on the growth of rubrene ($C_{42}H_{28}$) wire fabricated by thermal evaporation, followed by solvent-vapor annealing for the application of organic thin film transistor. Solvent-vapor annealing was carried out in precisely controlled vapor pressure at elevated temperature. Micro-sized, and elongated rubrene wire was obtained via solvent annealing process reproducibly. Optical image and XRD data shows highly crystalline quality of rubrene wire.

  • PDF

Recent Progresses in the Growth of Two-dimensional Transition Metal Dichalcogenides

  • Jung, Yeonjoon;Ji, Eunji;Capasso, Andrea;Lee, Gwan-Hyoung
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.24-36
    • /
    • 2019
  • Recently, considerable progress and many breakthroughs have been achieved in the growth of two-dimensional materials, especially transition metal dichalcogenides (TMDCs), which attract significant attention owing to their unique properties originating from their atomically thin layered structure. Chemical vapor deposition (CVD) has shown great promise to fabricate large-scale and high-quality TMDC films with exceptional electronic and optical properties. However, the scalable growth of high-quality TMDCs by CVD is yet to meet industrial criteria. Therefore, growth mechanisms should be unveiled for a deeper understanding and further improvement of growth methods are required. This review summarizes the recent progress in the growth methods of TMDCs through CVD and other modified approaches to gain insights into the growth of large-scale and high-quality TMDCs.

Fabrication of epitaxial ZnO layers on MOCVD-ZnO/(01-12) sapphire by chemical vapor transport

  • Hong, Sang-Hwui;Kato, Kenichi;Mimura, Kouji;Uchikoshi, Masahito;Abe, Seishi;Isshiki, Minoru
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.700-702
    • /
    • 2009
  • We present the epitaxial growth of high-quality ZnO layers by chemical vapor transport (CVT) technique on (01-12) sapphire with a ZnO buffer layer growth by metal-organic chemical vapor deposition (MOCVD). The surface of the grown ZnO epitaxial layers has atomically flats and the RMS is 0.11 nm. PL spectrum of as-grown samples exhibits two emissions originated by interactions between photon and free excitons.

  • PDF

A Study on the Diamond Thin Films Synthesized by Microwave Plasma Enhance Chemical Vapor Deposition (마이크로웨이브 플라즈마 화학기상성장법에 의한 다이아몬드 박막의 합성에 관한 연구)

  • 이병수;이상희;박상현;유동현;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.809-814
    • /
    • 1998
  • In this study, the metastable state diamond thin films have been deposited on Si substrates from methand-hydrogen and oxygen mixture usin gMicrowave Plasma Enhanced Chemical Vapor Deposition (MWPCVD) method. effects experimental parameters MWPCVD including methan concentrations, oxygen additions, operating pressure, deposition time on the growth rate and crystallinity were investigated. diamond thin film was synthesized under the following conditions: methane concentration of 0.5%(0.5sccm)∼5%(5sccm). oxygen concentration of 0∼80%(2.4sccm). operating pressure of 30Torr∼ 70Torr, deposition time of 1∼32hr. SEM, WRD, and Raman spectroscopy were employed to analyse the growth rate and morphology, crystallinity and prefered growth direction, and relative amounts of diamond and non=diamond phases respectively.

  • PDF

Inductively-Coupled Plasma Chemical Vapor Growth Characteristics of Graphene Depending on Various Metal Substrates (다양한 금속 기판재료에 따른 그래핀의 유도결합 플라즈마 화학기상 성장 특성)

  • Kim, Dong-Ok;Trung, Tran Nam;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.694-699
    • /
    • 2014
  • We report the chemical vapor deposition growth characteristics of graphene on various catalytic metal substrates such as Ni, Fe, Ag, Au, and Pt. 50-nm-thick metal films were deposited on $SiO_2/Si$ substrates using dc magnetron sputtering. Graphene was synthesized on the metal/$SiO_2$/Si substrates with $CH_4$ gas (1 SCCM) diluted in mixed gases of 10% $H_2$ and 90 % Ar (99 SCCM) using inductively-coupled plasma chemical vapor deposition (ICP-CVD). The highest quality of graphene film was achieved on Ni and Fe substrates at $900^{\circ}C$ and 500 W of ICP power. Ni substrate seemed to be the best catalytic material among the tested materials for graphene growth because it required the lowest growth temperature ($600^{\circ}C$) as well as showing a low ICP power of 200W. Graphene films were successfully grown on Ag, Au, and Pt substrates as well. Graphene was formed on Pt substrate within 2 sec, while graphene film was achieved on Ni substrate over a period of 5 min of growth. These results can be understood as showing the direct CVD growth of graphene with a highly efficient catalytic reaction on the Pt surface.

The Study on Characteristics of High Frequency Glow Discharge in Organic Vapor (유기 가스중 고주파 글로우가전 특성에 관한 연구)

  • 이덕출;김은배;박상현;박종대
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.355-360
    • /
    • 1985
  • In this paper, the discharge phenomena of high frequency glow discharge in organic vapor are basically investigted to establish the growth mechanism and preparation technique for organic thin film. According to the increasing of discharge frequency, the discharge firing voltage(Vs) of organic vapor decreases. The dependence of discharge voltage(Vd) on gas pressure is generally in accord with Paschen's Law and Vd decreases as gas flow rate become larger, but increases as dischange current density become higher. And the values of Vd in organic vapor are generally higher than those of inorganic gas.

  • PDF

Direct synthesis mechanism of amorphous $SiO_x$ nanowires from Ni/Si substrate (Ni/Si 기판을 사용하여 성장시킨 비결정질 $SiO_x$ 나노 와이어의 성장 메커니즘)

  • Song, W.Y.;Shin, T.I.;Lee, H.J.;Kim, H.;Kim, S.W.;Yoon, D.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.256-259
    • /
    • 2006
  • The amorphous $SiO_x$ nanowires were synthesized by the vapor phase epitaxy (VPE) method. $SiO_x$ nanowires were formed on silicon wafer of temperatures ranged from $800{\sim}1100^{\circ}C$ and nickel thin film was used as a catalyst for the growth of nanowires. A vapor-liquid-solid (VLS) mechanism is responsible for the catalyst-assisted amorphous $SiO_x$ nanowires synthesis in this experiment. The SEM images showed cotton-like nanostructure of free standing $SiO_x$ nanowires with the length of more than about $10{\mu}m$. The $SiO_x$ nanowires were confirmed amorphous structure by TEM analysis and EDX spectrum reveals that the nanowires consist of Si and O.

A review: controlled synthesis of vertically aligned carbon nanotubes

  • Hahm, Myung-Gwan;Hashim, Daniel P.;Vajtai, Robert;Ajayan, Pulickel M.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.185-193
    • /
    • 2011
  • Carbon nanotubes (CNTs) have developed into one of the most competitively researched nano-materials of this decade because of their structural uniqueness and excellent physical properties such as nanoscale one dimensionality, high aspect ratio, high mechanical strength, thermal conductivity and excellent electrical conductivity. Mass production and structure control of CNTs are key factors for a feasible CNT industry. Water and ethanol vapor enhance the catalytic activity for massive growth of vertically aligned CNTs. A shower system for gas flow improves the growth of vertically aligned single walled CNTs (SWCNTs) by controlling the gas flow direction. Delivery of gases from the top of the nanotubes enables direct and precise supply of carbon source and water vapor to the catalysts. High quality vertically aligned SWCNTs synthesized using plasma enhance the chemical vapor deposition technique on substrate with suitable metal catalyst particles. This review provides an introduction to the concept of the growth of vertically aligned SWCNTs and covers advanced topics on the controlled synthesis of vertically aligned SWCNTs.