• 제목/요약/키워드: Vapor growth

검색결과 1,157건 처리시간 0.025초

HFCVD 증착 온도 변화에 따른 단결정 다이아몬드 표면 형상 및 성장률 변화 (A Study on the Growth Rate and Surface Shape of Single Crystalline Diamond According to HFCVD Deposition Temperature)

  • 권진욱;김민수;장태환;배문기;김성우;김태규
    • 열처리공학회지
    • /
    • 제34권5호
    • /
    • pp.239-244
    • /
    • 2021
  • Following Silicon Carbide, single crystal diamond continues to attract attention as a next-generation semiconductor substrate material. In addition to excellent physical properties, large area and productivity are very important for semiconductor substrate materials. Research on the increase in area and productivity of single crystal diamonds has been carried out using various devices such as HPHT (High Pressure High Temperature) and MPECVD (Microwave Plasma Enhanced Chemical Vapor Deposition). We hit the limits of growth rate and internal defects. However, HFCVD (Hot Filament Chemical Vapor Deposition) can be replaced due to the previous problem. In this study, HFCVD confirmed the distance between the substrate and the filament, the accompanying growth rate, the surface shape, and the Raman shift of the substrate after vapor deposition according to the vapor deposition temperature change. As a result, it was confirmed that the difference in the growth rate of the single crystal substrate due to the change in the vapor deposition temperature was gained up to 5 times, and that as the vapor deposition temperature increased, a large amount of polycrystalline diamond tended to be generated on the surface.

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • 한국결정성장학회지
    • /
    • 제15권5호
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.

Effects of impurity (N2) on thermo-solutal convection during the physical vapor transport processes of mercurous chloride

  • Kim, Geug-Tae;Kim, Young-Joo
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.117-124
    • /
    • 2010
  • For Ar=5, Pr=1.18, Le=0.15, Pe=2.89, Cv=1.06, $P_B$=20 Torr, the effects of impurity $(N_2)$ on thermally and solutally buoyancy-driven convection ($Gr_t=3.46{\times}10^4$ and $Gr_s=6.02{\times}10^5$, respectively) are theoretically investigated for further understanding and insight into an essence of thermo-solutal convection occurring in the vapor phase during the physical vapor transport. For $10K{\leq}{\Delta}T{\leq}50K$, the crystal growth rates are intimately related and linearly proportional to a temperature difference between the source and crystal region which is a driving force for thermally buoyancy-driven convection. Moreover, both the dimensionless Peclet number (Pe) and dimensional maximum velocity magnitudes are directly and linearly proportional to ${\Delta}T$. The growth rate is second order-exponentially decayed for $2{\leq}Ar{\leq}5$. This is related to a finding that the effects of side walls tend to stabilize the thermo-solutal convection in the growth reactor. Finally, the growth rate is found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장 (Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy)

  • 조성룡;김선태
    • 한국재료학회지
    • /
    • 제12권4호
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

감압화학증착의 이단계 성장으로 실리콘 기판 위에 증착한 in-situ 인 도핑 다결정 실리콘 박막의 미세구조 조절 (Manipulation of Microstructures of in-situ Phosphorus-Doped Poly Silicon Films deposited on Silicon Substrate Using Two Step Growth of Reduced Pressure Chemical Vapor Deposition)

  • 김홍승;심규환;이승윤;이정용;강진영
    • 한국전기전자재료학회논문지
    • /
    • 제13권2호
    • /
    • pp.95-100
    • /
    • 2000
  • For the well-controlled growing in-situ heavily phosphorus doped polycrystalline Si films directly on Si wafer by reduced pressure chemical vapor deposition, a study is made of the two step growth. When in-situ heavily phosphorus doped Si films were deposited directly on Si (100) wafer, crystal structure in the film is not unique, that is, the single crystal to polycrystalline phase transition occurs at a certain thickness. However, the well-controlled polycrtstalline Si films deposited by two step growth grew directly on Si wafers. Moreover, the two step growth, which employs crystallization of grew directly on Si wafers. Moreover, the two step growth which employs crystallization of amorphous silicon layer grown at low temperature, reveals crucial advantages in manipulating polycrystal structures of in-situ phosphorous doped silicon.

  • PDF

직경 3인치의 AlN 단결정 성장에 관한 연구 (A study on the growth of 3 inch grade AlN crystal)

  • 강승민
    • 한국결정성장학회지
    • /
    • 제29권3호
    • /
    • pp.140-142
    • /
    • 2019
  • 자외선 LED용 기판소재로 응용가능한 AlN(질화알루미늄) 단결정을 물리기상이동법(Physical Vapor Transport Method)으로 성장하기 위해 성장 거동을 조사하였다. 다결정의 종자결정을 사용하였으며, 직경은 3인치급이었고, 120시간 동안 성장공정을 수행하여 길이 약 4 mm의 다결정상을 얻었다. 본 연구에서는 성장 조건과 대형의 도가니를 사용하였을 경우의 성장 거동에 대하여 고찰하여 보고자 하였다.

Influence of thermo-physical properties on solutal convection by physical vapor transport of Hg2Cl2-N2 system: Part I - solutal convection

  • Kim, Geug-Tae;Kim, Young-Joo
    • 한국결정성장학회지
    • /
    • 제20권3호
    • /
    • pp.125-132
    • /
    • 2010
  • For typical governing dimensionless parameters of Ar = 5, Pr = 1.16, Le = 0.14, Pe = 3.57, Cv = 1.02, $Gr_s=2.65{\times}10^6$, the effects of thermo physical properties such as a molecular weight, a binary diffusivity coefficient, a partial pressure of component B on solutally buoyancy-driven convection (solutal Grashof number $Gr_s=2.65{\times}10^6$) are theoretically investigated for further understanding and insight into an essence of solutal convection occurring in the vapor phase during the physical vapor transport of a $Hg_2Cl_2-N_2$ system. The solutally buoyancy-driven convection is significantly affected by any significant disparity in the molecular weight of the crystal components and the impurity gas of nitrogen. The solutal convection in a vertical orientation is found to be more suppressed than a tenth reduction of gravitational accelerations in a horizontal orientation. For crystal growth parameters under consideration, the greater uniformity in the growth rate is obtained for either solutal convection mode in a vertical orientation or thermal convection mode in horizontal geometry. The growth rate is also found to be first order exponentially decayed for $10{\leq}P_B{\leq}200$ Torr.

InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석 (Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion)

  • 임익태;윤석범
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

수직배향된 산화아연 나노막대의 성장 및 발광특성에 관한 연구 (Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods and their photoluminescent properties)

  • Jeon Yong-Ho;Park Won-Il;Lee Gyu-Cheol
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2002년도 하계학술발표회
    • /
    • pp.174-175
    • /
    • 2002
  • One-dimensional semiconductor nanowires and nanorods have attracted increasing interest due to their unique physical properties and diversity for potential electronic and photonic device applications., Unlike the conventional nanowires fabricated by metal catalyst-assisted vapor-liquid-solid (VLS) method, we developed metalorganic vapor-phase epitaxial (MOVPE) growth for which no catalyst is needed. The structural and photoluminecent properties will also be discussed. (omitted)

  • PDF

물을 첨가한 탄소나노튜브의 저온 저압 합성 (Water-Assisted Synthesis of Carbon Nanotubes at Low Temperature and Low Pressure)

  • 김영래;전홍준;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.395-395
    • /
    • 2008
  • Water-assisted synthesis of carbon nanotubes (CNTs) has been intensively studied in recent years, reporting that water vapor enhances the activity and lifetime of metal catalyst for the CNT growth. While most of these studies has been focused on the supergrowth of CNTs at high temperature, rarely has the similar approach been made for the CNT synthesis at low temperature. Since the metal catalyst are much less active at lower temperature, we expect that the addition of water vapor may increase the activity of catalyst more largely at lower temperature. We synthesized multi-walled CNTs at temperature as low as $360^{\circ}C$ by introducing water vapor during growth. The water addition caused CNTs to grow ~3 times faster. Moreover, the water-assisted growth prolonged the termination of CNT growth, implying the enhancement of catalyst lifetime. In general, a thinner catalyst layer is likely to produce smaller-diameter, longer CNTs. In a similar manner, the water vapor had a greater effect on the growth of CNTs for a smaller thickness of catalyst in this study. To figure out the role of process gases, CNTs were grown in the first stage and then exposed to each of process gases in the second stage. It was shown that water vapor and hydrogen did not etch CNTs while acetylene led to the additional growth of CNTs even faster in the second stage. As-grown CNTs were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Raman spectroscopy.

  • PDF