• Title/Summary/Keyword: Vapor growth

Search Result 1,157, Processing Time 0.025 seconds

Effects of epilayer growth temperature on properties of undoped GaN epilayer on sapphire substrate by two-step MOCVD (2단계 MOCVD법에 의해 사파이어 기판 위 성장된 undoped GaN 에피박막의 특성에 미치는 고온성장 온도변화의 영향)

  • Chang K.;Kwon M. S.;Cho S. I.
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.4
    • /
    • pp.222-228
    • /
    • 2005
  • Undoped GaN epitaxial layer was grown on c-plane sapphire substrate by a two-step growth with metalorganic chemical vapor deposition(MOCVD). We have investigated the effects of the variation of final growth temperature on surface morphology, roughness, crystal quality, optical property, and electrical property In a horizontal MOCVD reactor, the film was grown at 300 Tow low-pressure with a fixed nucleation temperature of $500^{\circ}C$, varing the final growth temperature from $850\~1050^{\circ}C$ . The undoped GaN epilayers were characterized by atomic force microscopy, high-resolution x-ray diffractometer, photoluminescence, and Hall effect measurement.

A study on the growth morphology of AlN single crystal according to the change in temperature using HVPE method (HVPE(Hydride Vapor Phase Epitaxy) 법을 적용한 온도 변화에 따른 AlN 단 결정의 성장 형상에 관한 연구)

  • Seung Min Kang;Gyong-Phil Yin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.1
    • /
    • pp.36-39
    • /
    • 2024
  • As interest in power semiconductors is growing recently, research on device design and application using light energy gap materials such as SiC and GaN is being actively conducted. Because AlN single crystals have a larger energy gap than the above mentioned materials, research on high-power devices is also in progress, but commercialized wafers have not yet been reported, so research is needed. In this study, we applied the HVPE (Hydride vapor phase epitaxy) method to produce AlN single crystals and attempted to obtain bulk single crystals using our own manufacturing equipment. To this end, we would like to report the results of securing the growth conditions for single crystals. we would like to report on the change in the shape of the grown crystal according to the change in temperature.

Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate (HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성)

  • Hong, S.H.;Jeon, H.S.;Han, Y.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Hwang, S.L.;Ha, H.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2009
  • In this paper, a selective area growth (SAG) of a GaN/AlGaN double heterostructure (DH) has been performed on r-plane sapphire substrate by using the mixed-source hydride vapor phase epitaxy (HVPE) with multi-sliding boat system. The SAG-GaN/AlGaN DH consists of GaN buffer layer, Te-doped AlGaN n-cladding layer, GaN active layer, Mg-doped AlGaN p-cladding layer, and Mg-doped GaN p-capping layer. The electroluminescence (EL) characteristics show an emission peak of wavelength, 439 nm with a full width at half maximum (FWHM) of approximately 0.64 eV at 20 mA. The I-V measurements show that the turn-on voltage of the SAG-GaN/AlGaN DH is 3.4 V at room temperature. We found that the mixed-source HVPE method with a multi-sliding boat system was one of promising growth methods for III-Nitride LEDs.

Growth of nickel-catalyzed carbon nanofibers using MPCVD method and their electrical properties

  • Kim, Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • Carbon nanofilaments were formed on silicon substrate via microwave plasma-enhanced chemical vapor deposition method. The structure of carbon nanofilaments was identified as the carbon nanofibers. The extent of carbon nanofibers growth and the diameters of carbon nanofibers increased with increasing the total pressure. The growth direction of carbon nanofibers was horizontal to the substrate. Laterally grown carbon nanofibers showed the semiconductor electrical characteristics.

Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz (27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구)

  • Lee, Kise;Kim, Sunkue;Kim, Sunyoung;Kim, Sangho;Kim, Gunsung;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

Structural and Field-emissive Properties of Carbon Nanotubes Produced by ICP-CVD: Effects of Substrate-Biasing (ICP-CVD 방법으로 성장된 탄소 나노튜브의 구조적 특성 및 전계방출 특성: 기판전압 인가 효과)

  • Park, C.K.;Kim, J.P.;Yun, S.J.;Park, J.S.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.132-138
    • /
    • 2007
  • Carbon nanotubes (CNTs) arc grown on Ni catalysts employing an inductively-coupled plasma chemical vapor deposition (ICP-CVD) method. The structural and field-emissive properties of the CNTs grown are characterized in terms of the substrate-bias applied. Characterization using the various techniques, such as field-omission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Auger spectroscopy (AES), and Raman spectroscopy, shows that the structural properties of the CNTs, including their physical dimensions and crystal qualities, as well as the nature of vertical growth, are strongly dependent upon the application of substrate bias during CNT growth. It is for the first time observed that the provailing growth mechanism of CNTs, which is either due to tip-driven growth or based-on-catalyst growth, may be influenced by substrate biasing. It is also seen that negatively substrate-biasing would promote the vertical-alignment of the CNTs grown, compared to positively substrate-biasing. However, the CNTs grown under the positively-biased condition display a higher electron-emission capability than those grown under the negatively-biased condition or without any bias applied.

Effect of $NH_3$ on the Synthesis of Carbon Nanotubes Using Thermal Chemical Vapor Deposition

  • Cho, Hyun-Jin;Jang, In-Goo;Yoon, So-Jung;Hong, Jin-Pyo;Lee, Nae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1219-1224
    • /
    • 2006
  • This study investigates the effect of $NH_3$ gas upon the growth of carbon nanotubes (CNTs) using thermal chemical vapor deposition. It is considered that the CNT synthesis occurs mainly through two steps, clustering of catalyst particles and subsequent growth of CNTs. We thus introduced $NH_3$ during either an annealing or growth step. When $NH_3$ was fed only during annealing, CNTs grew longer and more highly crystalline with diameters unchanged. An addition of $NH_3$ during growth, however, resulted in shorter CNTs with lower crystallinity while increased their diameters. Vertically aligned, highly populated CNT samples showed poor field emission characteristics, leading us to apply post-treatments onto the CNT surface. The CNTs were treated by adhesive tapes or etched back by dc plasma of $N_2$ to reduce the population density and the radius of curvatures of CNTs. We discuss the morphological changes of CNTs and their field emission properties upon surface treatments.

  • PDF

Carbon Nanotube Growth on Invar Alloy using Coal Tar Pitch (콜타르피치를 이용한 Invar 합금 위 탄소나노튜브의 합성)

  • Kim, Joon-Woo;Jeong, Goo-Hwan
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.516-522
    • /
    • 2017
  • We report the growth of carbon nanotubes (CNT) on Invar-42 plates using coal tar pitch (CTP) by chemical vapor deposition (CVD) method. The solid phase CTP is used as an inexpensive carbon source since it produces a bunch of hydrocarbon gases such as $CH_4$ and other $C_xH_v$ by thermal decomposition over $450^{\circ}C$. The Invar-42 is a representative Ni-based ferrous alloy and can be used repetitively as a substrate for CNT growth because Ni and Fe are used as very active catalytic elements. We changed mixing ratio of carrier gases, argon and hydrogen, and temperature of growth region. It was found that the optimum gas ratio and temperature for high quality CNT growth are $Ar:H_2=400:400$ sccm and $1000^{\circ}C$, respectively. In addition, the carbon nanoball (CNB) was also obtained by just changing the mixing ratio to $Ar:H_2=100:600$ sccm. Finally, CTP can be employed as a versatile carbon source to produce various carbon-based nanomaterials, such as CNT and CNB.

Investigation of direct growth behavior of carbon nanotubes on alumina powders to use as heat dissipation materials (방열소재 응용을 위한 알루미나 분말 표면 위 탄소나노튜브의 직접 성장 거동 고찰)

  • Jong-Hwan Lee;Hyun-Ho Han;Goo-Hwan Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • As a preliminary study to produce functional nanocomposites in a heat dissipation device, we performed the direct synthesis of carbon nanotubes (CNTs) on the surface of alumina (Al2O3) powders. A thermal chemical vapor deposition (TCVD) system was used to grow CNTs directly on the Al2O3 surface. In order to investigate the growth behavior of CNTs, we varied both furnace temperature of the TCVD ranging from 700 to 850 ℃ and concentration of the ferritin-dissolved DI solution from 0.1 to 2.0 mg/mL. From the previous results, the gas composition and duration time for CNT growth were fixed as C2H4 : H2 = 30 : 500 (vol. %) and 10 min, respectively. Based on the analysis results, the optimized growth temperature and ferritin concentration were found to be 825 ℃ and 0.5 mg/mL, respectively. The obtained results could be adopted to achieve mass production of nanocomposites with heat dissipation functionality.