DOI QR코드

DOI QR Code

Investigation of direct growth behavior of carbon nanotubes on alumina powders to use as heat dissipation materials

방열소재 응용을 위한 알루미나 분말 표면 위 탄소나노튜브의 직접 성장 거동 고찰

  • Jong-Hwan Lee (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Hyun-Ho Han (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University) ;
  • Goo-Hwan Jeong (Department of Advanced Materials Science and Engineering, Graduate School of Kangwon National University)
  • 이종환 (강원대학교 대학원 신소재공학과) ;
  • 한현호 (강원대학교 대학원 신소재공학과) ;
  • 정구환 (강원대학교 대학원 신소재공학과)
  • Received : 2022.12.20
  • Accepted : 2023.01.09
  • Published : 2023.02.28

Abstract

As a preliminary study to produce functional nanocomposites in a heat dissipation device, we performed the direct synthesis of carbon nanotubes (CNTs) on the surface of alumina (Al2O3) powders. A thermal chemical vapor deposition (TCVD) system was used to grow CNTs directly on the Al2O3 surface. In order to investigate the growth behavior of CNTs, we varied both furnace temperature of the TCVD ranging from 700 to 850 ℃ and concentration of the ferritin-dissolved DI solution from 0.1 to 2.0 mg/mL. From the previous results, the gas composition and duration time for CNT growth were fixed as C2H4 : H2 = 30 : 500 (vol. %) and 10 min, respectively. Based on the analysis results, the optimized growth temperature and ferritin concentration were found to be 825 ℃ and 0.5 mg/mL, respectively. The obtained results could be adopted to achieve mass production of nanocomposites with heat dissipation functionality.

Keywords

References

  1. A. J. Mcnamara, Y. Joshi, Z. M. Zhang, Thermal resistance of thermal conductive adhesive anchored carbon nanotubes interface material, Int. J. Therm. Sci., 96 (2015) 221-226. https://doi.org/10.1016/j.ijthermalsci.2015.05.006
  2. K. C. Yung, H. Liem, H. S. Choy, W. K. Lun, Thermal performance of high brightness LED array package on PCB, Int. Commun. Heat Mass Transfer, 37 (2010) 1266-1272. https://doi.org/10.1016/j.icheatmasstransfer.2010.07.023
  3. G. Sui, S. Jana, W. H. Zhong, M. A. Fuqua, C. A. Ulven, Dielectric properties and conductivity of carbon nanofiber/semi-crystalline polymer composites, Acta Mater., 56 (2008) 2381-2388. https://doi.org/10.1016/j.actamat.2008.01.034
  4. J. S. Roh, J. S. Ahn, B. J. Kim, H. Y. Jeon, S. K. Seo, S. H. Kim, S. W. Lee, Thermal emissivity changes as a function of degree of flakes alignment on the graphite surfaces, J. Kor. Inst. Surf. Eng., 42 (2009) 95-101. https://doi.org/10.5695/JKISE.2009.42.2.095
  5. H. Yu, G. Xu, X. Shen, X. Yan, C. Shao, C. Hu, Effects of size, shape and floatage of Cu particles on the low infrared emissivity coatings, Progr. Org. Coating, 66 (2009) 161-166. https://doi.org/10.1016/j.porgcoat.2009.07.002
  6. J. Hone, M. Whitney, C. Piskoti, A. Zettl, Thermal conductivity of single-walled carbon nanotubes., Phys. Rev. B, 59 (1999) 2514-2516. https://doi.org/10.1103/PhysRevB.59.R2514
  7. J. Hone, M. C. Llaguno, M. J. Biercuk, Thermal properties of carbon nanotubes and nanotube-based materials., Appl Phys A Mater. Sci. Process, 74 (2002) 339-343. https://doi.org/10.1007/s003390201277
  8. E. Pop, D. Mann, Q. Wang, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett., 6 (2006) 96-100. https://doi.org/10.1021/nl052145f
  9. A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials., Nat. Mater., 10 (2011) 569-581. https://doi.org/10.1038/nmat3064
  10. J. L. Blackburn, A. J. Ferguson, C. Cho, J. C. Grunlan, Carbon-nanotube-based thermoelectric materials and devices, Adv. Mater., 30 (2018) 1704386.
  11. Y. Noorhana, S. Surajudeen, R. Amir, S. Hassan, S. Afza, A. Bilal, Z. Saima, G. Maneka, Percolation threshold of multiwall carbon nanotube-PVDF composite for electromagnetic wave propagation, Nano Express, 1 (2020) 010060.
  12. M. L. Sham, J. K. Kim, Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments, Carbon, 44 (2006) 768-777. https://doi.org/10.1016/j.carbon.2005.09.013
  13. P. C. Ma, J. K. Kim, B. Z. Tang, Functionalization of carbon nanotubes using a silane coupling agent, Carbon, 44 (2006) 3232-3238. https://doi.org/10.1016/j.carbon.2006.06.032
  14. S. H. Hong, M. H. Kim, C. K. Hong, D. S. Jung, S. E. Shim, Encapsulation of multiwalled carbon nanotubes by poly(4- vinylpyridine) and its dispersion stability in various solvent media, Synth. Met., 158 (2008) 900-907. https://doi.org/10.1016/j.synthmet.2008.06.023
  15. K. T. Lau, D. Hui, Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures, Carbon, 40 (2002) 1605-1606. https://doi.org/10.1016/S0008-6223(02)00157-4
  16. J. S. Jang, J. W. Bae, S. H. Yoon, A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites, J. Mater. Chem., 13 (2003) 676-681. https://doi.org/10.1039/b212190e
  17. Y. S. Song, J. R. Youn, Influence of dispersion sates of carbon nanotubes on physical properties of epoxy nanocomposites, Carbon, 43 (2005) 1378-1385. https://doi.org/10.1016/j.carbon.2005.01.007
  18. B. J. Lee, S. I. Jo, E. H. Yoon, A. R. Lee, W. Y. Lee, S. G. Heo, J. S. Hwang, G. H. Jeong, Fabrication and characterization of polymer-based carbon nanomaterial composites for thermal conductive adhesive application, Kor. Inst. Surf. Eng., 53 (2020) 160-168.
  19. G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, Y. Homma, Size control of catalytic nanoparticles by thermal treatment and its application to diameter control of single-walled carbon nanotubes, Appl. Phys. Lett., 90 (2007) 043108.
  20. G. H. Jeong, R. Hatakeyama, T. Hirata, K. Tohji, K. Motomiya, N. Sato, Y. Kawazoe, Structural deformation of single-walled carbon nanotubes by a magnetized alkali-fullerene plasma method, Appl. Phys. Lett., 79 (2001) 4213-4215. https://doi.org/10.1063/1.1427744
  21. G. H. Jeong, A. Yamazaki, S. Suzuki, Y. Kobayashi, Y. Homma, Behavior of catalytic nanoparticles during CVD for carbon nanotube growth, Chem. Phys. Lett., 422 (2006) 83-88. https://doi.org/10.1016/j.cplett.2006.02.030