• Title/Summary/Keyword: Vapor growth

Search Result 1,157, Processing Time 0.02 seconds

Influence of Mg Vapor Pressure on the $MgB_2$/Carbon Fiber Fabricated by Physical Vapor Deposition method

  • Li, Xiang;Ha, Hong-Soo;Kim, Cheol-Jin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.4
    • /
    • pp.5-9
    • /
    • 2011
  • We have fabricated the superconducting $MgB_2$/carbon fiber by physical vapor deposition method. Mg (Magnesium) and B (Boron) were simultaneously deposited on the carbon fiber using the RF-sputtering and thermal evaporation, respectively. To ensure the relatively high vapor pressure of Mg at the growth region and the subsequent phase stability of $MgB_2$ at the deposition temperature, inverted funnel-like guide made of Mg-foil was employed while one side of the guide were open for the sputtered B flux. Mg vapor pressure should be controlled precisely to secure the complete reaction. The $MgB_2$/carbon fiber showed a uniformly deposited thin layer with dense and well-formed grains. The $MgB_2$/carbon fibers in this study showed $T_c$~37.5K, $J_c$ ~ $2{\times}10^4\;A/cm^2$ in the 20K, 0T.

Understanding the Growth Kinetics of Graphene on Cu and Fe2O3 Using Inductively-Coupled Plasma Chemical Vapor Deposition

  • Van Nang, Lam;Kim, Dong-Ok;Trung, Tran Nam;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Applied Microscopy
    • /
    • v.47 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • High-quality graphene was synthesized on Cu foil and $Fe_2O_3$ film using $CH_4$ gas via inductively-coupled plasma chemical vapor deposition (ICPCVD). The graphene film was formed on $Fe_2O_3$ at a temperature as low as $700^{\circ}C$. Few-layer graphene was formed within a few seconds and 1 min on Cu and $Fe_2O_3$, respectively. With increasing growth time and plasma power, the graphene thickness was controllably reduced and ultimately self-limited to a single layer. Moreover, the crystal quality of graphene was constantly enhanced. Understanding the ICPCVD growth kinetics that are critically affected by ICP is useful for the controllable synthesis of high-quality graphene on metals and oxides for various electronic applications.

Synthesis of Silicon Carbide Whiskers (I) : Reaction Mechanism and Rate-Controlling Reaction (탄화규소 휘스커의 합성(I) : 반응기구의 율속반응)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1329-1336
    • /
    • 1998
  • A twt -step carbothermal reduction scheme has been employed for the synthesis of SiC whiskers in an Ar or a H2 atmosphere via vapor-solid two-stage and vapor-liquid-solid growth mechanism respectively. It has been shown that the whisker growth proceed through the following reaction mechanism in an Ar at-mosphere : SiO2(S)+C(s)-SiO(v)+CO(v) SiO(v)3CO(v)=SiC(s)whisker+2CO2(v) 2C(s)+2CO2(v)=4CO(v) the third reaction appears to be the rate-controlling reaction since the overall reaction rates are dominated by the carbon which is participated in this reaction. The whisker growth proceeded through the following reaction mechaism in a H2 atmosphere : SiO2(s)+C(s)=SiO(v)+CO(v) 2C(s)+4H2(v)=2CH4(v) SiO(v)+2CH4(v)=SiC(s)whisker+CO(v)+4H2(v) The first reaction appears to be the rate-controlling reaction since the overall reaction rates are enhanced byincreasing the SiO vapor generation rate.

  • PDF

The Observation of Nucleation & Growth during Water Vapor Induced Phase Inversion of Chlorinated Poly(vinyl chloride) Solution using SALS

  • Jang, Jae Young;Lee, Young Moo;Kang, Jong Seok
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • Small angle light scattering (SALS) and field emission scanning electron microscope (FE-SEM) have been used to investigate the effects of alcohol on phase separation of chlorinated poly(vinyl chloride) (CPVC)/tetrahydrofuran (THF)/alcohol (9/61/30 wt%) solution during water vapor induced phase separation. A typical scattering pattern of nucleation & growth (NG) was observed for all casting solutions of CPVC/THF/alcohol. In the case of the phase separation of CPVC dope solution containing 30 wt% ethanol or n-propanol, the demixing with NG was observed to be heterogeneous. Meanwhile, the phase separation of CPVC dope solution with 30 wt% n-butanol was found to be predominantly homogeneous NG. Although the different phase separation behavior of NG was observed with types of alcohol additives, the resultant surface morphology had no remarkable differences. That is, even though the NG process by water vapor is either homogeneous or heterogeneous, this difference does not play a main role on the final surface morphology. However, it was estimated from the result of hydraulic flux that the phase separation by homogeneous NG provided the membrane geometry with lower resistance in comparison with that by heterogeneous one.

Graphene Growth with Solid Precursor-Polyethylene (고체 전구체-폴리에틸렌을 이용한 그래핀 성장)

  • Ryu, Jongseong;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.304-310
    • /
    • 2019
  • Chemical vapor deposition method using $CH_4$ gaseous hydrocarbons is generally used to synthesize large-area graphene. Studies using non-gaseous materials such as ethanol, hexane and camphor have occasionally been conducted. In this study, large-area graphene is synthesized via chemical vapor deposition using polyethylene as a carbon precursor. In particular, we used a poly glove, which is made of low-density polyethylene. The characteristics of the synthesized graphene as functions of the growth time of graphene and the temperature for vaporizing polyethylene are evaluated by optical microscopy and Raman spectroscopy. When the polyethylene vaporizing temperature is over $150^{\circ}C$, large-area graphene with excellent quality is synthesized. Raman spectroscopy shows that the D peak intensity increased and the 2D peak intensity decreased with increasing growth time. The reason for this is that sp3 bonds in the graphene can form when the correct amount of carbon source is supplied. The quality of the graphene synthesized using polyethylene is similar to that of graphene synthesized using methane gas.

Heat transfer study of double diffusive natural convection in a two-dimensional enclosure at different aspect ratios and thermal Grashof number during the physical vapor transport of mercurous bromide (Hg2Br2): Part I. Heat transfer

  • Ha, Sung Ho;Kim, Geug Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.1
    • /
    • pp.16-24
    • /
    • 2022
  • A computational study of combined thermal and solutal convection (double diffusive convection) in a sealed crystal growth reactor is presented, based on a two-dimensional numerical analysis of the nonlinear and strongly coupled partial differential equations and their associated boundary conditions. The average Nusselt numbers for the source regions are greater than those at the crystal regions for 9.73 × 103 ≤ Grt ≤ 6.22 × 105. The average Nusselt numbers for the source regions varies linearly and increases directly with the thermal Grashof number form 9.73 × 103 ≤ Grt ≤ 6.22 × 105 for aspect ratio, Ar (transport length-to-width) = 1 and 2. Additionally, the average Nusselt numbers for the crystal regions at Ar = 1 are much greater than those at Ar = 2. Also, the occurrence of one unicellular flow structure is caused by both the thermal and solutal convection, which is inherent during the physical vapor transport of Hg2Br2. When the aspect ratio of the enclosure increases, the fluid movement is hindered and results in the decrease of thermal buoyancy force.

Crystal growth of ring-shaped SiC polycrystal via physical vapor transport method (PVT 방법에 의한 링 모양의 SiC 다결정 성장)

  • Park, Jin-Yong;Kim, Jeong-Hui;Kim, Woo-Yeon;Park, Mi-Seon;Jang, Yeon-Suk;Jung, Eun-Jin;Kang, Jin-Ki;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.163-167
    • /
    • 2020
  • Ring-shaped SiC (Silicon carbide) polycrystals used as an inner material in semiconductor etching equipment was manufactured using the PVT (Physical Vapor Transport) method. A graphite cylinder structure was placed inside the graphite crucible to grow a ring-shaped SiC polycrystal by the PVT method. The crystal polytype of grown crystal were analyzed using a Raman and an UVF (Ultra Violet Fluorescence) analysis. And the microstructure and components of SiC crystal were identified by a SEM (Scanning Electron Microscope) and EDS (Energy Disruptive Spectroscopy) analyses. The grain size and growth rate of SiC polycrystals fabricated by this method was varied with temperature variation in the initial stage of growth process.

The use of spectroscopic Ellipsometey for the observation of diamond thin film growth by microwave plasma chemical vapor deposition (마이크로웨이브 플리즈마 화학기상증착에 의한 다이아몬드 박막의 성장 관찰을 위한 분광 Ellipsometry의 이용)

  • 홍병유
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.240-248
    • /
    • 1998
  • The plasma chemical vapor deposition is one of the most utilized techniques for the diamond growth. As the applications of diamond thin films prepared by plasma chemical vapor deposition(CVD) techniques become more demanding, improved fine-tuning and control of the process are required. The important parameters in diamond film deposition include the substrate temperature, $CH_4/H_2$ gas flow ratio, total, gas pressure, and gas excitation power. With the spectroscopic ellipsometry, the substrate temperature as well as the various parameters of the film can be determined without the physical contact and the destructiveness under the extreme environment associated with the diamond film deposition. It is introduced how the real-time spectroscopic ellipsometry is used and the data are analyzed with the view of getting the growth condition and the accompanied features for a good quality of diamond films. And it is determined the important parameters during the diamond film growth, which include the final sample will be measured with Raman spectroscopy to confirm the diamond component included in the film.

  • PDF

A study on growing of bulk AlN single crystals grown having a (011) growth face of by PVT method (PVT법을 이용한 (011)면으로 성장된 AlN 단결정 성장에 관한 연구)

  • Kang, Seung-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.1
    • /
    • pp.32-34
    • /
    • 2015
  • AlN Single Crystal were grown by PVT (Physical vapor transport) method on bulk seed. It was performed by high-frequency induction-heating coil. AlN source powder was loaded at bottom side of the carbon crucible and the crystal seed was loaded at the upper side of the crucible. The temperature conditions of the growth was varied $2000{\sim}2100^{\circ}C$ and the surrounding pressure was $1{\times}10^{-1}{\sim}200$ Torr. And the hot-zone of the heating position was controlled elaborately according to growth. The 17 mm-diameter, 7 mm-thickness AlN single crystal is obtained for about 600 hours growing. It was recognized that the growth direction of as grown crystal was R[011] by the Laue X-Ray camera measurement.

Hexanal Vapor Induced Resistance against Major Postharvest Pathogens of Banana (Musa acuminata L.)

  • Dhakshinamoorthy, Durgadevi;Sundaresan, Srivignesh;Iyadurai, Arumukapravin;Subramanian, Kizhaeral Sevathapandian;Janavi, Gnanaguru Janaki;Paliyath, Gopinathan;Subramanian, Jayasankar
    • The Plant Pathology Journal
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2020
  • Hexanal, a C-6 aldehyde has been implicated to have antimicrobial properties. Hence, this study was conducted to determine the antifungal activities of hexanal vapor against major postharvest pathogens of banana viz., Colletotrichum gloeosporioides and Lasiodiplodia theobromae. The pathogens were cultured in vitro and exposed to hexanal vapor at 600, 800, 1,000 and 1,200 ppm. Mycelial growth of both fungal pathogens were inhibited completely at 800 ppm and the incidence of anthracnose and stem-end rot diseases reduced by 75.2% and 80.2%, respectively. The activities of peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase and glucanase had transiently increased in hexanal vapor treated banana by 5 to 7 days and declined thereafter. Postharvest treatment of banana with hexanal vapor resulted in phospholipase D inhibition and also resulted in cell wall thickening of the treated fruit, which impeded the penetration of the pathogenic spores. This was further confirmed by scanning electron micrographs. The defense-related protein intermediaries had increased in hexanal vapor treated banana fruit, which suggests induced resistance against C. gloeosporioides and L. theobromae, via., the phenylpropanoid pathway which plays a significant role in hindering the pathogen quiescence. Delayed ripening due to inhibition of phospholipase D enzyme, inhibition of mycelial growth and induced systemic resistance by defense enzymes collectively contributed to the postharvest disease reduction and extended shelf life of fruit.